DOI QR코드

DOI QR Code

Flood Alert and Warning Scheme Based on Intensity-Duration-Quantity (IDQ) Curve considering Antecedant Moisture Condition

선행함수지수를 고려한 강우강도-지속시간-홍수량(IDQ) 곡선기반의 홍수예경보기법

  • 김진겸 (단국대학교 토목환경공학과) ;
  • 강부식 (단국대학교 토목환경공학과)
  • Received : 2015.06.25
  • Accepted : 2015.11.10
  • Published : 2015.12.01

Abstract

The methodology of utilizing Intensity-Duration-flood Quantity (IDQ) curve for flood alert and warning was introduced and its performance was evaluated. For this purpose the lumped parameter model was calibrated and validated for gauged basin data set and the index precipitation equivalent to alert and warning flood was estimated. The index precipitation and IDQ curves associated by three different Antecedant Moisture Conditions (AMCs) are made provision for various possible flood scenarios. The test basin is Wonju-cheon basin ($94.4km^2$) located in Gangwon province, Korea. The IDQ curves corresponding to alert (50% of design flood level) and warning (70% of design flood level) level was estimated using the Clark unit hydrograph based lumped parameter model. The performance evaluation showed 0.704 of POD (Probability of Detection), 0.136 of FAR (False Alarm Ratio), and 0.633 of CSI (Critical Success Index), which is improved from the result of IDQ with single fixed AMC.

수문모형 기반의 강우강도-지속시간-홍수량(IDQ) 곡선을 이용하여 홍수예보에 활용하는 기법을 소개하고 그 성능을 평가하였다. 이를 위하여 계측된 유역의 자료를 이용하여 집중형 모형의 검보정을 실시하고 하천의 특보 홍수량에 준하는 등가강우량을 산정하였다. 특보홍수량과 선행함수상태별 IDQ 곡선을 산정되면 발생 가능한 여러 시나리오에 대비할 수 있다. 시범대상유역은 강원도에 위치한 원주천 유역 ($94.4km^2$)이며 주의보 수위(계획홍수량의 50%)와 경보 수위(계획홍수량의 70%)에 해당하는 IDQ 곡선이 산정되었다. 과거 10년간의 자료로부터 선행함수 조건별 IDQ곡선의 홍수예보능력을 평가한 결과, 탐지확률은 0.704, 경보실패율은 0.136, 임계성공지수는 0.633으로 나타났으며, 단일 조건의 IDQ 곡선을 적용한 홍수예보능력에 비해 더 나은 평가지수를 얻을 수 있었다.

Keywords

References

  1. Bae, D. H., Shim, J. B. and Yoon, S. S. (2012). "Developement and assesment of flow nomograph for the real-time flood forecsting in Cheonggye stream." J. of Korea Water Resources Association, KWRA, Vol. 45, No. 11, pp. 1107-1119 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.11.1107
  2. Carpenter, T. M., Sperfslage, J. A., Georgakakos, K. P., Sweeney, T. and Fread, D. L. (1999). "National threshold runoff estimation utilizing GIS in support of operational flash flood warning system." J. of Hydrology, Vol. 224, pp. 21-44. https://doi.org/10.1016/S0022-1694(99)00115-8
  3. Gourley, J. J., Erlingis, J. M., Hong, Y. and Wells, E. B. (2011). "Evaluation of tools used for monitoring and forecasting flash floods in the united states." Weather and forecasting, Vol. 27, pp. 158-173.
  4. Kim, J. G., Kang, B. S. and Yoon, B. M. (2014). "Analysis of intensity-duration-quantity (IDQ) curve for designing flood retention basin." J. of Korea Water Resources Association, KWRA, Vol. 47, No. 1, pp. 83-93 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.1.83
  5. Kim, W. T., Bae, D. H., Cho, C. H. (2002). "Threshold runoff computation for flash flood forecast on small catchment scale." J. of Korea Water Resources Association, KWRA, Vol. 35, No. 5, pp. 553-561 (in Korean). https://doi.org/10.3741/JKWRA.2002.35.5.553
  6. Ministry of Land, Transport and Maritime affairs (MLTM) (2009). Hydrological annual report in Korea (in Korean).
  7. Ministry of Land, Transport and Maritime affairs (MLTM) (2011). Study on improvement and supplement of probability rainfall (in Korean).
  8. Norbiato, D., Borga, M., Esposti, S. D. and Gaume, E. (2008). "Flash flood warning base on rainfall thresholds and soil moisture conditions : An assessment for gauged and ungauged basins.", J. of hydrology, Vol. 362, pp. 274-290. https://doi.org/10.1016/j.jhydrol.2008.08.023
  9. Ntelekos, A. A., Georgakakos, K. P. and Krajewski, W. F. (2005). "On the uncertainties of flash flood guidance:Toward probabilistic forecasting of flash floods." J. of Hydrometeorology, Vol. 7, pp. 896-915.
  10. Park, J. B., Shin, D. S., Park, M. J., Kang, B. G. and Shin, H. S. (2013). "Rainfall thresholds estimation to develop flood forecasting and warning system for Nakdong small river basins." J. of Korea Society of Hazard Mitigation, KOSHAM, Vol. 13, No. 2, pp. 311-317 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.2.311
  11. Reed, S., Schaake, J. and Zhang, Z. (2007). "Distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations." J. of hydrology, Vol. 337, pp. 402-420. https://doi.org/10.1016/j.jhydrol.2007.02.015
  12. Schaefer, J. T. (1990). "The critical success index as an indicator of warning skill." Weather and Forecasting, Vol. 5, pp. 570-575. https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2
  13. Shin, H. S., Kim, H. T. and Park, M. J. (2004). "An application of making the flash flood warning trigger rainfall in real basin using GIS and GCUH. -At the Namcheon basin of the Sobaek mountain-" J. of Korea Society of Civil Engineers, KSCE, Vol. 24, No. 4B, pp. 311-319 (in Korean).
  14. Sweeney, T. L. (1992). Modernized areal flash flood guidance, NOAA Tech. Rep. NWS HYDRO 44, Hydrologic Research Laboratory, National Weather Service, NOAA, Springfield, VA.
  15. Wilks, D. S. (1995). Statistical methods in the atmospheric sciences, Academic Press, Burlington, MA.