DOI QR코드

DOI QR Code

Application of Ground Penetrating Radar for Estimation of Loose Layer

지반 이완구간 추정을 위한 지하투과레이더의 적용

  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Kang, Seonghun (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 홍원택 (고려대학교 건축사회환경공학부) ;
  • 강성훈 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2015.09.22
  • Accepted : 2015.11.10
  • Published : 2015.11.30

Abstract

An investigation of a void and a loose layer of the ground is essential in order to prevent the losses of life and properties caused by subsidence and sinkage of the ground. Recently, studies on the ground penetrating radar survey have been actively conducted in order to estimate the void and the loose layer of the ground. However, an error can be committed by contrarily predicting a dense ground and a loose layer because the ground penetrating radar estimates an interface depth between geo-materials that have different electrical impedances. In this study, a loose ground depth is estimated using the characteristics of the reflected electromagnetic wave obtained from the ground penetrating radar survey. To gather the signals according to the loose ground depths, the ground penetrating radar survey is conducted on a field which underwent a huge ground settlement. In addition, the dynamic cone penetration test is performed to verify the result of the loose ground depth estimation from the ground penetrating radar survey. From the analysis of the reflection characteristics of the electromagnetic wave, a phase of an electromagnetic wave reflected from a denser soil layer is found to be identical with that of the first measured signal. On the other hand, a phase of an electromagnetic wave reflected from the loose soil layer is found to be opposed to that of the first detected signal. The comparison between the dynamic cone penetration index and electromagnetic signals by the ground penetrating radar shows that the estimated depth of the loose or dense layer is perfectly matched with a high reliability. The ground penetrating radar survey and the signal analysis performed in this study can be used not only for the survey of interface depth between the discontinuity layers but also for the estimation of the loose layer.

대규모 지반침하 및 지반함몰로 인한 재산, 인명피해를 사전에 예방하기 위하여 지반의 공동 및 이완구간에 대한 조사는 필수적이다. 최근, 지하투과레이더를 이용한 지반침하 및 지반함몰 구간 예측과 관련된 연구가 활발히 진행되고 있으나, 기존의 지하투과레이더 탐사에서는 전기적 임피던스가 서로 다른 층간 경계면 심도만을 산정하므로 조밀한 지반과 느슨한 지반을 서로 반대로 예측하는 오류를 범할 수 있었다. 본 연구에서는, 지하투과레이더로부터 획득된 전자기파의 반사파 특성을 이용하여 이완구간 심도를 추정하고자 하였다. 이완구간에 따른 신호획득을 위하여 과거 침하이력이 있었던 현장을 대상으로 지하투과레이더 탐사가 수행되었으며, 결과의 상호비교 및 검증을 위하여 동적 콘 관입시험이 수행되었다. 전자기파의 반사특성 분석 결과, 지하투과레이더 안테나에서 처음 측정된 신호와 조밀한 지반에서 반사되어 측정된 전자기파는 동일한 위상을 보이며, 느슨한 지반에서 반사되는 경우 안테나에서 처음 측정된 신호와 반대 위상을 보이는 것으로 나타났다. 획득된 지하투과레이더 신호로부터 대상지반의 이완구간 심도 산정 및 동적 콘 관입지수와 상호비교 결과, 지하투과레이더 신호 분석으로부터 산정된 이완구간 또는 조밀한 구간의 심도는 높은 신뢰도로 산정되었다. 본 연구에서 수행된 지하투과레이더 신호획득 및 분석과정은 지반 불연속층의 심도산정뿐만 아니라 이완구간 산정에 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Al-Qadi, I. L., Xie, W., and Roberts, R. (2010), "Optimization of Antenna Configuration in Multiple-Frequency Ground Penetrating Radar System for Railroad Substructure Assessment", NDT&E International, Elsevier, 43, pp.20-28. https://doi.org/10.1016/j.ndteint.2009.08.006
  2. Al-Qadi, I. L., Xie, W., Roberts, R., and Leng, Z. (2010), "Data Analysis Techniques for GPR Used for Assessing Railroad Ballast in High Radio-frequency Environment", Journal of Transportation Engineering, ASCE, 136(4), 392-399. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000088
  3. ASTM D6432-11 (2011), "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation", Annual Book of ASTM Standard 04.09, ASTM International, West Conshohocken, PA.
  4. ASTM D6951 (2009), "Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications", Annual Book of ASTM Standard 04.03, ASTM International, West Conshohocken, PA.
  5. Chung, C. K. (2015), "Sinkhole, does the Ground of the City is Crumbling? (environment day special issue)", Water Journal, 131, pp.51-63.
  6. Davis, J. L. and Annan, A. P. (1989), "Ground-penetrating Radar for High-resolution Mapping of Soil and Rock Stratigraphy", Geophysical Prospecting, 37(5), pp.531-551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x
  7. Geophysical Survey Systems, Inc. (2005), "GSSI Handbook for RADAR Inspection of Concrete", GSSI, 38.
  8. Kim, Y. J., Lee, S. S., Ahn, B. Y., and Kim, Y. G. (2000), "Examination on the Influence of Depth, Size and Interval of Rebar on the Signal of Ground Penetrating Radar", Journal of the Korea Institute for Structural Maintenance Inspection, 4(2), pp.167-174.
  9. Kim, Y. S. and Lee, C. (1993), "Probabilistic Study of Surface Subsidence due to the Collapse of Underground Void during Earthquakes", Journal of Korean Society of Civil Engineering, 13(4), pp.217-226.
  10. Kwon, K. S. and Park Y. J. (2001), "Stability Assessment of Building Foundation over Abandoned Mines", Journal of Korean Society for Rock Mechanics, 11(2), pp.174-181.
  11. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for Determination of the Engineering Parameters of Sandy Soils", Engineering Geology, Elsevier, 101(3), 195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  12. Rial, F. I., Lorenzo, H., Pereira, M., and Armesto, J. (2009), "Waveform Analysis of UWB GPR Antennas", Sensors, 9(3), 1454-1470. https://doi.org/10.3390/s90301454
  13. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), "Soils and Waves-Particulate Materials Behavior, Characterization and Process Monitoring", John Wiley and Sons, NY, 448.
  14. Scala, A. J. (1956), "Simple Methods of Flexible Pavement Design Using Cone Penetrometers", New Zealand Engineering, 11(2), 34.

Cited by

  1. 토립자 유실을 고려한 로지스틱 회귀분석 및 GIS 기반 도시 지반함몰 취약성 평가 vol.30, pp.2, 2015, https://doi.org/10.7474/tus.2020.30.2.149