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Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial 

images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small 

differences without unmixing endmember components and therefore without the need for an endmember library. However, 

large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, 

therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands 

in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The 

selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), 

support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands 

were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results 

than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification 

techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies 

ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods 

investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best 

results.
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machine
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Introduction

Huanglongbing (HLB) or citrus greening disease (Figure 

1) is believed to have spread from China. The main 

carriers of the disease are two psyllids of which the Asian 

citrus psyllid (Diaphorina citri) is the most common in 

Florida, USA. The bacterium causing the disease is Candidatus 

Liberibacter asiaticus (Garnier et al., 2000). There are 

many strains of the bacterium that have been observed 

across Asia, Africa, Brazil, etc. (Brlansky et al., 2005).

The disease affects the vascular system of the plant and 

affects the growth of the plant, leaves and fruit. The 

characteristic symptom is blotchiness of leaves and 

yellowing of the veins in the leaves. The fruits also develop 

a yellow color, uneven ripening and tend to be asymmetric. 

The tree once infected dies in 3-5 years. Currently there is 

no cure for this disease. As of November, 2011, 37 counties 

with over 4,012 square mile sections (Albritton, 2012) 

had been infected in Florida alone. The citrus industry is 
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(a) (b)

Figure 1.  HLB infected fruits and leaves from an orange grove in the Citrus Research and Education Centre, Lake Alfred, Florida: (a) 
infected fruit, and (b) three infected leaf samples at different stages of infection and a healthy leaf sample.

worth $9 billion (USDA, 2012) to the state of Florida with 

nearly 243,000 ha of land dedicated to citrus production, 

making HLB a big concern. 

The most reliable method to test if a tree has been 

infected is the polymerase chain reaction (PCR) method, 

but it is expensive, time consuming and labor intensive. 

Visual monitoring can be used at an advanced stage when 

symptoms begin to show on the leaf and fruit. But even 

then it is possible to conflate the symptoms with other 

less threatening conditions which show similar symptoms, 

for example, zinc deficiency which causes yellowing of 

leaves. It would be useful if the disease can be detected 

accurately before the infection becomes severe and visual 

symptoms arise. 

Aerial hyperspectral imagery has made it easy to view 

large tracts of land at once, and the increased spectral 

resolution allows for the detection and classification of 

features based on spectral signatures. Previous attempts 

at hyperspectral image classification have been successful 

in detecting citrus canker (Qin et al., 2009), bacterial leaf 

blight (Yang, 2010), and diseases in lettuce plants (Matsuo 

et al., 2006), to name a few. Some of the most commonly 

used classification methods are support vector machines 

(SVM) (Candade and Dixon, 2004; Demir and Erturk, 

2007), artificial neural networks (ANN) (Kuo et al., 2008; 

Candade and Dixon, 2004), Gaussian classifier (Kuo et al., 

2008), and K-nearest neighbor (KNN) (Kuo et al., 2008; 

Yang, 2010).

Vegetation indices - metrics calculated using data from 

selected bands are also extremely popular classification 

techniques. Different indices have been used to detect 

ganoderma basal stem rot disease in oil palms (Shafri and 

Hamdan, 2009), rice sheath blight disease (Qin and Zhang, 

2005) and yellow rust infection in wheat (Huang et al., 

2007). Normalized difference vegetation index (NDVI) 

(Rouse et al., 1973) is probably one of the most popular 

vegetative indices and has been also employed in this 

study to detect vegetation from background. 

Beside vegetation indices, another method to overcome 

the large number of hyperspectral bands - usually running 

into the hundreds - is dimensionality or band reduction. 

These high resolution bands are spectrally very close and 

therefore adjacent bands tend to have a high degree of 

correlation. Principal component analysis (PCA) (Bajwa 

et al., 2004) and minimum noise fraction (MNF) (Boardman 

and Kruse, 1994) are commonly used at a pre-processing 

stage. One or both of these methods were used by Kumar 

et al. (2012) and Li et al. (2012) for citrus HLB detection. 

Mixture tuned matched filtering (MTMF), linear spectral 

unmixing (LSU), spectral angle mapper (SAM) and other 

commonly used hyperspectral image analysis techniques 

were explored in the same studies. Partial least squares 

discriminant analysis (PLS-DA) is one of the commonly 

used methods. Williams et al. (2012) implemented PLS-DA 

to discriminate different species and strains of fungi 

associated with maize from hyperspectral images in 

1000-2500 nm, and reported 60-80% correct prediction 

accuracies. Kong et al. (2013) applied PLS-DA method to 
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Table 1.  Summary of 2010 and 2011 hyperspectral image data: HLTY = healthy, HLB = infected, HLBS = infected and symptomatic, 
and HLBNS = infected with no symptoms

Image Pixel samples (pixels) Training set (pixels) Calibration set (pixels) Validation set (pixels)

2010 SG image 

52 HLTY

109 HLBS

16 HLBNS

62 (22 HLTY + 40 HLBS)
60 (15 HLTY + 35 HLBS +

10 HLBNS)

55 (15 HLTY + 34 HLBS +

6 HLBNS)

2011 CREC image 
90 HLTY

154 HLB
80 (30 HLTY + 50 HLB) 80 (30 HLTY + 50 HLB) 84 (30 HLTY + 54 HLB)

identify rice seed cultivars from hyperspectral images of 

rice seeds in 870-1730 nm, and achieved 80-100% clas-

sification accuracies depending on different models. Some 

more popularly used classification methods have been 

surveyed by Sankaran et al. (2010). 

However, the low spatial resolution when compared to 

the size of the plant or tree causes each tree to be 

represented by only a few pixels. Therefore, each pixel is 

a mixture of both healthy and infected regions making 

classification more difficult. While many techniques that 

unmix these components exist, in this study we attempted 

to classify without unmixing these similar spectra, and 

the results were compared with the unmixed results by Li 

et al. (2012). 

Thus the overall goal of this study was two-fold: 

1. Reduce the dimensionality of hyperspectral data by 

picking the most appropriate bands using the forward 

feature selection algorithm (FFSA) (Whitney, 1971) 

2. Classify spectrally similar data on the basis of small 

spectral differences using the bands selected by 

FFSA. 

The FFSA method is explained in the method section. 

Two hyperspectral (HS) images were used to test the 

algorithms - an image taken in 2010 whose classes (healthy 

and infected) were very similar, and an image from 2011 

with better spatial resolution and hence slightly better 

separation between the classes. 

 

Materials and Methods 

Materials 

In 2010, hyperspectral images were acquired at the 

Southern Garden (SG) grove in Hendry County, Florida, 

USA using the airborne imaging systems described by 

Yang et al. (2003) and Yang (2010). The images were 

acquired on a clear day from an altitude of about 1,500 m 

at 2:30 pm on December 3, 2010. The image contained 

128 bands between 457.2 - 921.7 nm with an interval of 

3.6 nm between bands and a spatial resolution of 1 m. The 

orange variety was Valencia.

The SG grove data had three classes: healthy (HLTY), 

HLB symptomatic (HLBS), and PCR positive for HLB but 

showing no symptoms (HLBNS), all confirmed with PCR 

testing of the leaves. The HLTY samples were collected 

from trees showing no HLB symptoms, while the HLBS 

samples were taken from trees which showed more severe 

symptoms. The non-symptomatic samples were infected 

but showed no visible symptoms. These were used for 

calibration and validation but not for training. The HLTY 

and HLBS samples were used in all stages of learning and 

classification as shown in Table 1.

The 2011 image was acquired on December 14 at the 

Citrus Research and Education Center (CREC) citrus grove 

in Lake Alfred, Florida, USA at noon on a clear day from an 

altitude of 640 m. An airborne hyperspectral camera unit 

- AISA EAGLE VNIR hyper spectral imaging sensor (400 - 

1000 nm spectral range with a total of 128 spectral bands 

and a spectral resolution of approximately 5 nm) was 

used for imaging. The images had a spatial resolution of 

0.5 m. Of the 128 bands, the first 10 and last 20 bands (up 

to 440 nm and beyond 900 nm) were noisy and removed 

from the dataset. The orange variety was Hamlin. 

The 2011 data had only two kinds of samples: healthy 

(HLTY) and infected (HLB). The infected trees were confirmed 

with PCR testing; the healthy trees were only confirmed 

by visual inspection by a ground-truthing expert at the 

CREC. Figure 2 shows a 2011 color infrared image of the 

CREC grove. 

Both the 2010 and 2011 HS images were converted to 

reflectance images using tarps of different grey levels. 

Their reflectance was measured using a handheld spect-

rometer (HR-1024, Spectra Vista Corporation, Poughkeepsie, 

NY, USA) and matched with the aerial images. Five 3 m × 

3 m tarps with grey levels of 3%, 10%, 30%, 45%, and 
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Figure 2.  Hyperspectral image of a block in the CREC grove 
acquired in 2011.

60% were used for the 2010 image but only one white 

tarp with an average reflectance of 56% was used for the 

2011 image. The empirical line method was used to convert 

the raw digital number (DN) values to reflectance.

Both of the images were geo-referenced to UTM N17 

projection with the datum WGS-84 using coordinates 

collected with an RTK GPS receiver (HiPer XT, Topcon, 

Livermore, CA, USA) with positioning error less than 15 

mm. These coordinates were used with the images to 

determine the location of the infected and healthy plants 

in the images. The spectral data was divided into three 

datasets almost equally as shown in Table 1.

Methods

In this study, simple yet efficient algorithms were used 

for classification of citrus canopies. A method to improve 

the accuracy using band selection (using FFSA) was used 

in conjunction with these algorithms. The techniques 

used were KNN, naïve Bayes classifier (NBC), SVM and 

generalized local discriminant bases (LDB) technique. 

Simulations were carried out using Matlab (Mathworks, 

Natick, Massachusetts, U.S.A.). 

To reduce execution time, only the pixels corresponding 

to ground truth points were used. These ground truth 

pixels were divided randomly into three groups - training, 

calibration and validation. Training data was used to 

generate a model from the dataset and the calibration 

was used to select the best model for optimum results. 

Multiple models can be generated using different sets of 

bands; calibration is therefore the process of selecting the 

band(s) which yield the best accuracy. The band(s) 

identified during calibration were used in the validation 

set to check the accuracy of the classifier. 

However, even before training and calibration, the pixel 

data can be subjected to the processes of normalization 

or spectral difference - the analog of differentiation for 

discrete data. These were done to try and improve the 

separation between the classes, since the data of the two 

classes (HLTY and HLBS) appeared very similar, particularly 

the SG data set.

Since the training, calibration and validation groups 

were formed randomly, repeatability of the algorithm 

and consistency of results needed to be verified. Hence, 

the entire procedure was repeated multiple times with 

new training, calibration and validation sets generated 

randomly each time (referred to as a “run”). The different 

methods were compared based on the median of validation 

set classification accuracy over 100 runs. The median 

accuracy was chosen because it indicates a 50% chance of 

getting a better result. Described in the remaining sections 

are the various processing steps and the classification 

algorithms.

Normalization and difference spectra

Since the two classes appear very similar, different 

processes were tried to improve separation such as 

normalization and difference (first difference) operations. 

One of the simplest ways to normalize data is to convert 

all of them to the same range [0, 1]. This procedure can be 

used to correct for scaling and shifting of waveforms and 

highlight some features not apparent otherwise. Normalized 

spectrum (y) is calculated as:

y = (x - min{x})/(max{x} - min{x})  (1)

where x is the original spectrum.

Similarly, first difference of a signal is calculated as 

xi = (yi+1 - yi)  (2)

where yi is the reflectance in the i
th

 band and xi is the first 

difference at the i
th

 band.

First difference of a signal can be used to compare the 

variation of signals across the wavelength spectrum. First 

difference highlights the difference between adjacent 

bands; if the relation between adjacent bands is different 

for the two classes, this method may improve the separation 

between them. For example, in case of citrus plants, it is 

known that HLB infected pixels are brighter while the 
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(a)

(b)

(c)

Figure 3.  Comparison of original, normalized and 1
st
 difference of 

spectra. HLB is displayed in green, and healthy in black: (a) 
original spectra, (b) normalized spectra, and (c) 1st difference of 
the original spectra.

healthy pixels are darker, so the relationship between 

adjacent bands in healthy pixels is not the same as in 

infected pixels. 

Figure 3 shows the spectra of an unprocessed set of 

healthy and infected pixels, normalized and first difference 

spectra. For this case, better separation was observed 

between HLB (green) and healthy (black) spectra in the 

450-550 nm and 650-700 nm range on normalization. 

For the first difference spectra, there is great difference 

between HLB and healthy spectra around 740 nm. While 

perfect classification may still not be possible even with 

processing due to the similarity of these classes, an 

improvement was observed.

With normalization and difference operations, three 

different types of processing of spectra, i.e., no processing, 

normalization and first difference can be performed on 

the data. Each of the three processing steps was combined 

with the classification methods described below.

Forward feature selection algorithm(FFSA)

Forward feature selection algorithm (FFSA) as described 

by Whitney (1971) was used to determine the subset of 

bands that would give the best classification results. The 

procedure is: for the chosen classification algorithm the 

single band with the highest accuracy is chosen. A new 

band is added to the previously selected band(s) iteratively 

to maximize classification accuracy. This procedure is 

repeated until all bands have been selected or the clas-

sification accuracy does not improve significantly (0% 

increase was the cutoff used in this study).

KNN classification

K nearest neighbor (KNN) classification method (Cover 

and Hart, 1967) is a supervised technique where the 

unknown data is classified to a group based on the class of 

its closest neighbor(s) from the training set. The factor ‘K’ 

denotes the number of neighbors to consider for classification 

purposes. When K=1, only the closest neighbor is con-

sidered and its class is assigned to the new sample. Two 

variations of KNN were implemented in this study - KNN1 

and KNN2. KNN1 used only a subset of bands selected 

using FFSA, whereas in KNN2 all the bands were utilized.

SVM classification

Support vector machines (Melgani and Bruzzone, 2004) 

transform the training set to a higher dimension to improve 

separation between the classes. This method is very 

useful for data that cannot be linearly separated. By projecting 

to a higher dimension, differences between classes can be 

enhanced allowing linear classifiers. The vectors which 

indicate the least separation between the classes are 

called support vectors and training involves finding a 

transform that maximizes the distance between support 

vectors. Two variants of this algorithm, SVM1 and SVM2, 

were used. SVM1 used FFSA and SVM2 did not.

Naïve bayesian classification (NBC)

Naïve Bayesian classifier (NBC) (Cestnik, 1990) is a 

probabilistic approach to the classification problem. From 

the training data set, it develops a Bayesian probability 

distribution model for all the classes and classifies new 

data based on the model. The class with the highest 

likelihood of occurrence for a given sample is assigned to 

it. NBC also used FFSA (NBC1) and non-FFSA variant 

(NBC2).

Generalized local discriminant bases 

classification (LDB)

The top down generalized local discriminant bases 

approach of Kumar et al. (2001) identifies sets of adjacent 



Katti et al. Band Selection Using Forward Feature Selection Algorithm for Citrus Huanglongbing Disease Detection
Journal of Biosystems Engineering • Vol. 40, No. 4, 2015 • www.jbeng.org

422

(a)

(b)

Figure 4.  Histogram of the wavelengths selected and number of bands by the different FFSA incorporating techniques for CREC image 
classification: (a) histogram of frequency of wavelengths chosen, and (b) histogram of number of bands.

bands that generate a good classification result. Taking 

advantage of the high covariance between adjacent bands, 

the algorithm combines adjacent bands using some metric - 

mean, for example. In the top-down approach, the set of 

available bands is split into two smaller sets of adjacent 

bands. These are then further split into two smaller sets 

and so on until each set only has one band. Sets with more 

than one band are combined using the mean operator to 

form “group-bands”. FFSA is applied on these group 

bands to select the ones which give the best accuracy. 

In this study, group bands were generated in a bottom 

up manner instead of the top-down because it was 

observed that the accuracy was higher for a smaller 

number of bands than for a larger set, therefore combining 

smaller sets of bands was preferred to splitting larger sets 

into smaller ones. Despite using a bottom up approach, the 

algorithm is different from the bottom up approach of 

Kumar et al. (2001).

Results and Discussion 

Results

For all the techniques, classification was allowed to 

progress from the learning stage only if the learning and 

calibration stages were able to achieve a calibration 

accuracy of at least 50% for both healthy and infected 

classes individually. This criterion was to ensure that the 

classifier is actually separating the two classes and not 

labelling all samples to one class. The condition also 

automatically ensured that overall training accuracy was 

at least 50%.

Comparison of performances was made based on the 

median classification accuracy of the validation stage. It 

must be noted that since the median is calculated separately 

for total, HLTY and HLB accuracies, the sum of HLTY and 

HLB pixels need not match the number of validation 

pixels. Another point of comparison was the accuracy of 

detecting HLB and HLTY pixels individually. A higher 

HLTY detection accuracy indicates a lower false positive 

rate (defined as the number of healthy pixels classified as 

infected and calculated as 100 - HLTY accuracy) which is 

a desired trait in a classifier. Due to the similarity of the 

two classes (particularly in the 2010 image), this was not 

entirely possible and the accuracy with which healthy 

pixels were detected was less than HLB in general, despite 

the roughly 70% overall accuracy. This was mainly due to 

the fewer number of HLTY samples, particularly for the 

SG data set which had very few HLTY pixels.

The 2010 data set showed poorer results in general 

because at the time of imaging the sun was not directly 

overhead but at an angle, and the spatial resolution of the 

image was also lower hence each pixel covered a larger 

area, increasing the chances of a pixel covering both 
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Table 2.  List of most frequently chosen bands for CREC and SG images

Image Frequency Method Wavelengths (nm)

CREC (2011)

5

NBC1 555.8, 659.9, 669.4, 678.9, 693.1, 697.9, 707.4, 712.1, 716.9, 832.9, 842.6, 847.4, 852.3

KNN1
477.6, 486.8, 491.3, 495.9, 500.5, 505.1, 509.7, 518.8, 570.0, 598.4, 617.3, 650.4, 740.6, 745.3, 

754.9, 759.8, 764.7, 774.4

SVM1
440.9, 477.6, 486.8, 491.3, 509.7, 570.0, 693.1, 702.6, 712.1, 716.9, 754.9, 759.8, 764.7, 769.5, 

774.4, 784.2, 793.9, 818.3, 852.3, 862.0

15

NBC1 None

KNN1 754.9

SVM1 570.0, 754.9, 759.8, 774.4

SG (2010)

5

NBC1 None

KNN1 466.3, 524.3, 557.0, 604.2, 909.0

SVM1 488.0, 593.3, 600.5, 658.6, 662.2, 763.8, 782.0, 792.9

15

NBC1 None

KNN1 None

SVM1 763.8, 792.9

Table 3.  Accuracy of all the algorithms for the SG grove

Method
Overall median accuracy (pixels (%)) Median validation accuracy of each class (pixels (%))

Qualified runs Spectral processing
Calibration Validation HLTY HLB

NBC1 48 (80.0) 35 (63.6) 4 (26.7) 31 (77.5) 16 Norm

KNN1 46 (76.7) 32 (58.2) 5 (33.3) 27 (67.5) 100 None

SVM1 48 (80.0) 35 (63.6) 5 (33.3) 29 (72.5) 100 1-Diff

LDB 44 (73.3) 37 (67.3) 5 (33.3) 32 (80.0) 75 1-Diff

NBC2 39 (65.0) 36 (65.5) 6 (40.0) 29 (72.5) 5 1-Diff

KNN2 41 (68.3) 33 (60.0) 6 (40.0) 27 (67.5) 27 1-Diff

SVM2 41 (68.3) 34 (61.8) 7 (46.7) 27 (67.5) 31 1-Diff

healthy and infected areas of a canopy. The 2011 CREC 

data set was slightly better because imaging was done at 

noon, and the spatial resolution was also better although 

still not as good as indoor measurements of Li et al. 

(2012).

The first objective of the study was band selection to 

reduce the number of bands from 128 (SG) or 98 (CREC). 

Figure 4 shows histogram plots of number of bands 

selected by each algorithm (based on FFSA) for the CREC 

grove image. It can be seen that less than 5 bands were 

chosen most time – a reduction of over 90%. This fulfils 

the first aim of the study. For the CREC image, the typical 

number of bands employed ranged between two and 

three with bands in the infrared range (>750 nm) selected 

most often. Other common, but less frequently selected 

bands located near the red edge (about 700 nm) and the 

green regions of the spectrum (>500 nm). While the 

median number of bands selected by other methods was 

between 2 and 3, KNN chose only 1 band.

The results for the SG grove image were also quite 

similar - the median number of bands selected was 2-3 

with 6 being the highest (NBC1 and KNN1). The wavelengths 

between 600 and 800 nm were most often used by each of 

the methods for classification (Table 2). However, their 

frequencies were not as high as the CREC image and 

neither were the range of frequencies. Due to the similarity 

of the two classes, 50% individual class accuracy could 

not be achieved by any of the methods during most runs, 

therefore none of the bands selected in those runs are 

listed. This reduced the range and frequency of the bands.

Table 3 lists the results of classification using all the 

algorithms for the SG grove and it can be seen from the 

last column that in all but two cases, the data was either 

normalized or first difference was used. Clearly processed 

data was better at detecting infected pixels for the SG data 

set. There were also a lot of “disqualified results” which 

constituted results where the calibration accuracy did 

not exceed 50% for both healthy and infected. The number 
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(a)

(b)

Figure 5.  Box plot of the spectrum of the healthy (blue) and HLB 
infected (red) pixels for SG and CREC images: (a) SG Image and 
(b) CREC Image.

Table 4.  Accuracy of all the algorithms for the CREC grove

Method
Overall median accuracy (pixels (%)) Median validation accuracy of each class (pixels (%))

Qualified runs Spectral processing
Calibration Validation HLTY HLB

NBC1 62 (77.5) 55 (66.3) 16 (53.3) 38 (71.7) 100 Norm

KNN1 63 (78.8) 53 (63.9) 15 (50.0) 37 (69.8) 100 1-Diff

SVM1 65 (81.3) 59 (71.1) 20 (66.7) 40 (75.5) 100 1-Diff

LDB 62 (77.5) 59 (71.1) 18 (60.0) 41 (77.4) 100 Norm

NBC2 52 (65.0) 53 (63.9) 19 (63.3) 35 (66.0) 82 None

KNN2 53 (66.3) 53 (63.9) 18 (60.0) 36 (67.9) 67 1-Diff

SVM2 58 (72.5) 60 (72.3) 21 (70.0) 38 (71.7) 90 None

of disqualified runs was calculated as ‘100 (total runs) - 

qualified runs’.

It can also be seen that the number of qualified runs 

was usually low except for SVM1 and KNN1. While the 

overall accuracy was not too poor, the median HLTY 

accuracy was lower than 50% in all cases during validation. 

Of the many factors causing it was imaging late in the 

afternoon when the sun was at an angle rather than 

overhead. Thus each pixel was a result of mixing of 

signals of not only the healthy and infected canopies but 

also the background and the shadows formed by the 

lower angle of the sun. Other factors included the low 

band selectivity in case of FFSA based methods, relatively 

large pixel size, and fewer HLTY samples. Therefore, each 

misclassified pixel was a bigger setback to the class 

accuracy. The median false positive rate for the SG data 

(data not shown) was quite high with all methods exceeding 

50%. The HLTY and HLB accuracy have been listed for the 

validation stage. A good result would have similar per-

formance for HLB and healthy classes. Poor performance 

for one of the classes implied that spectra of the healthy 

and infected pixels were quite similar. The box plot in 

Figure 5 indicates that they indeed were quite similar as 

evidenced by the narrow gap between the mean spectra 

of healthy and infected. Plots for HLTY are in blue and 

HLB in red in Figure 5. The rectangular boxes (narrow 

and filled; and wider and empty) represent data within 

25 and 75 percentile. The notch for the empty box and the 

line for the filled box near their center represent the 

median.

Along with the thin lines extending from the central 

box (called whiskers), the box plots represent approximately 

99.3% of the available data in a band. The remaining 0.7% 

is outliers which have been represented individually by 

stars. Many outliers can be observed in the SG grove 

image in the 500-700 nm range and again in the 900 nm 

range; both HLB and HLTY sets contained a lot of outlier 

pixels. 

The results for the CREC image of 2011 in Table 4 

appear to be a little more balanced than the SG clas-

sification results owing to slightly better separation 

between the classes. This implies that the accuracy of 

classification of healthy pixels was higher and both sets 

were contributing more equally to the final classification 

accuracy. This is a requirement of good classification 
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because it means that the classifier is able to distinguish 

between the two classes better.

The number of disqualified results was observed to be 

fewer on the whole as well – it was zero for all the FFSA 

based methods and in general less than a half of the 

disqualified runs for the 2010 image. Almost all the 

results for a particular case (NBC2) for the SG grove and 

about 70% in general had to be discarded. But less than a 

half of that number (30%) had to be discarded for the 

CREC image. 

Discussion

The first aim of the study, namely band selection, was 

successfully implemented using FFSA. The number of 

bands were reduced from 128 (SG image) or 98 (CREC) to 

about five or fewer depending on the classification method 

in consideration. Similar levels of reduction in the number 

of bands were achieved for both images. It was also 

observed that classification was better in general when 

band selection was used along with classification. 

For both images, it was observed that learning accuracy 

was better when fewer bands were used than when all 

the bands were used. Most techniques using all bands 

failed to train well enough to produce 50% individual 

class accuracy despite an overall accuracy of about 70%. 

Thus, feeding all the bands to the classifier may be 

detrimental to classification because most of the data is 

redundant and there is no mechanism to reject this 

useless information. 

In those runs where the “all band” methods produced 

acceptable results, the total accuracy was comparable to 

FFSA based methods. Also comparison of calibration and 

validation accuracies shows that for techniques without 

FFSA, the difference in results between calibration and 

validation was smaller. Difference in accuracies of almost 

20% was observed between calibration and validation 

for FFSA techniques. But it was less than 10% for non- 

FFSA techniques. Training was also much faster for the 

non-FFSA methods. But the advantages of using fewer 

bands and better learning (minimum 50% for each class 

individually) heavily outweighed the speed benefits.

The methods tested had different levels of computational 

complexity starting from the simple KNN technique to the 

probabilistic approach of NBC, and the more complex 

SVM and LDB. The more complex ones required more 

time to compute the results. While the different methods 

did not have drastically different results, considering the 

complexity and time taken SVM seemed to have a good 

balance of accuracy and computation time giving more 

priority to accuracy. NBC and KNN were much faster but 

slightly less accurate. LDB was slower but a little more 

consistent with its results, i.e., the validation accuracy 

and calibration accuracies were more comparable. The 

poorer performance of KNN could be attributed to poorer 

band selection - KNN results were based on an average of 

just 1 band, while the other methods chose on average 2 

or more. LDB tended to have a slightly higher false positive 

rate compared to SVM1 but lower than KNN1 in general. 

Comparing the accuracies of the different methods, 

most had a median accuracy of 60-70%. This is comparable 

to - and in some instances better than - the results of 

Kumar et al. (2012) and Li et al. (2012), who used SAM, 

spectral information divergence (SID), spectral feature 

fitting (SFF), MTMF, etc. on the same or similar datasets. 

Thus, it may not always be necessary to utilize standard 

hyperspectral classification methods. Commonly used, 

simpler methods can work equally well. Among the 

methods tested, SVM – in combination with FFSA – seems 

to be the best contender.

Conclusions 

This study completely supports the premise that band 

selection improves results when compared to using all 

the bands. Forward feature selection algorithm performs 

this task efficiently; it can improve the performance of 

even simple techniques such as KNN and bring it on par 

with techniques designed for hyperspectral information 

such as SAM, SID, MTMF, etc. Among the methods tested, 

SVM seemed to be the best compromise between complexity 

or execution time and accuracy; SVM was a good method 

for use both with FFSA and without. LDB followed SVM in 

accuracy for the FFSA based method and finally NBC and 

KNN. 

It can also be inferred that pre-processing techniques 

like normalization and spectral difference play a useful 

role in classifying these similar datasets. And until better 

spatial resolution can be achieved, classification errors 

have to be reduced through data pre-processing (normalization, 

spectra difference, etc.) or combining different methods 

to exploit different advantages (e.g., KNN and FFSA or 
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SVM and FFSA, etc.). Results for field measurements in Li 

et al. (2012) compared against the airborne imagery 

supports the need for better resolution images.
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