DOI QR코드

DOI QR Code

Effect of Porous Substrate on the Strength of Asymmetric Structure

  • Kim, Chul (School of Mechanical Systems Engineering, Kookmin University) ;
  • Park, Sang Hyun (School of Mechanical Systems Engineering, Kookmin University) ;
  • Kim, Taewoo (School of Mechanical Systems Engineering, Kookmin University) ;
  • Lee, Kee Sung (School of Mechanical Systems Engineering, Kookmin University)
  • Received : 2015.08.11
  • Accepted : 2015.09.09
  • Published : 2015.11.30

Abstract

In this study, we investigate the effect of porous $Al_2O_3$ substrate on the strengths of asymmetric structures after we prepare such a structure consisting of a dense $Li_2ZrO_3$ top layer and porous $Al_2O_3$ substrate layer. The porosity and elastic modulus of the substrate layer are controlled by sintering temperature, which has three values of 1150, 1250 and $1350^{\circ}C$. The porosity is controlled in the range of ~ 30-50 vol%, elastic modulus is ~80-120 GPa and elastic mismatch $E_s/E_c$ is ~ 0.6-1.0. Indentation stress-strain curves are obtained and analyzed to evaluate the yield stress of the asymmetric structure by concentrated local loading of WC balls. Conventional flexural strengths are also obtained to evaluate the strength of the asymmetric structure. The results indicate that the local yield strength of the asymmetric structure has mid-values between the top and the substrate layer; however, the flexural strength of the asymmetric structure are mainly influenced by elastic modulus and strength of the substrate.

Keywords

References

  1. S. Lee, K. S. Lee, S. K. Woo, J. W. Kim, T. Ishihara, and D. K. Kim, "Oxygen-Permeating Property of $LaSrBFeO_3$ (B=Co, Ga) Perovskite Membrane Surface-Modified by $LaSrCoO_3$," Solid State Ionics, 158 287-96 (2003). https://doi.org/10.1016/S0167-2738(02)00821-4
  2. X. Tan, Y. Liu, and K. Li, "Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation," AlChE Journal, 51 [7] 1991-2000 (2005). https://doi.org/10.1002/aic.10475
  3. J. H. Park, E. Lee, T. W. Kim, H. J. Yim, and K. S. Lee, "Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses," Trans. Korean Soc. Mech. Eng. A, 34 [12] 1849-56 (2010). https://doi.org/10.3795/KSME-A.2010.34.12.1849
  4. G. H. Cho, E. H. Kim, Y. G. Jung, and Y. K. Byeun, "Improving Oxidation Resistance and Fracture Strength of MgO-C Refractory Material Through Precursor Coating," Surf. Coat. Technol., 260 429-32 (2014). https://doi.org/10.1016/j.surfcoat.2014.11.035
  5. K. S. Lee, S. K. Lee, B. R. Lawn, and D. K. Kim, "Contact Damage and Strength Degradation in Brittle/Quasi-Plastic Silicon Nitride Bilayers," J. Am. Ceram. Soc., 81 [9] 2394-404 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02635.x
  6. J. B. Davis, A. Kristoffersson, E. Carlstrom, and W. J. Clegg, "Fabrication and Crack Deflection in Ceramic Laminates with Porous Interlayers," J. Am. Ceram. Soc., 83 [10] 2369-74 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01563.x
  7. K. S. Lee, K. I. Jung, Y. S. Heo, T. W. Kim, Y. G. Jung, and U. Paik, "Thermal and Mechanical Properties of Sintered Bodies and EB-PVD Layers of $Y_2O_3$ Added $Gd_2Zr_2O_7$ Ceramics for Thermal Barrier Coatings," J. Alloys Compd., 507 448-55 (2010). https://doi.org/10.1016/j.jallcom.2010.07.196
  8. K. S. Lee, D. H. Lee, and T. W. Kim, "Microstructure Controls in Gadolinium Zirconate/YSZ Double Layers and Their Properties," J. Ceram. Soc. Jpn., 122 [8] 668-73 (2014). https://doi.org/10.2109/jcersj2.122.668
  9. Y. H. Hsu, I. G. Turner, and A. W. Miles, "Fabrication of Porous Bioceramics with Porosity Gradients Similar to the Bimodal Structure of Cortical and Cancellous Bone," J. Mater. Sci., 18 2251-56 (2007).
  10. J. H. Kang, H. M. Cha, Y. G. Jung, and U. Paik, "Crack Suppression and Residual Stress in $BaTiO_3$ Based Ni-MLCCs of Y5V Specification through Post-Process," J. Mater. Process. Technol., 205 160-67 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.093
  11. K. S. Lee, S. K. Woo, I. S. Han, D. W. Seo, S. J. Park, and Y. O. Park, "Filtering Characteristics of Porous SiC Filter with High Surface Area," J. Ceram. Soc. Jpn., 110 [7] 656-61 (2002). https://doi.org/10.2109/jcersj.110.656
  12. Y. Zhang, F. He, S. Xia, L. Kong, D. Xu, and Z. Wu, "Adsorption of Sediment Phosphorus by Porous Ceramic Filter Media Coated with Nano-Titanium Dioxide Film," Ecol. Eng., 64 ,186-92 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.056
  13. K. S. Lee, D. W. Seo, J. H. Yu, and S. K. Woo, "A Study on the Improvement of Strength in NiO-YSZ Porous Anode Material for Solid Oxide Fuel Cell," J. Korean Ceram. Soc., 40 [3] 241-48 (2003). https://doi.org/10.4191/KCERS.2003.40.3.241
  14. G. Pia, L. Casnedi, M. Ionta, and U. Sanna, "On the Elastic Deformation Properties of Porous Ceramic Materials Obtained by Pore-Forming Agent Method," Ceram. Int., 41 11097-105 (2015). https://doi.org/10.1016/j.ceramint.2015.05.057
  15. K. S. Lee, S. K. Kim, C. Kim, T. W. Kim, and D. K. Kim, "Cracking of Densely Coated Layer Adhesively Bonded to Porous Substrates Under Hertzian Stress," J. Mater. Sci., 42 9116-20 (2007). https://doi.org/10.1007/s10853-007-2063-2
  16. K. S. Lee, S. Wuttiphan, X. Z. Hu, S. K. Lee, and B. R. Lawn, "Contact-Induced Transverse Fractures in Brittle Layers on Soft Substrates: A Study on Silicon Nitride Bilayers," J. Am. Ceram. Soc., 81 [3] 571-80 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02376.x
  17. K. S. Lee, Y. W. Rhee, D. H. Blackburn, and B. R. Lawn, "Cracking of Brittle Coatings Adhesively Bonded to Substrates of Unlike Modulus," J. Mater. Res., 15 [8] 1653-56 (2000). https://doi.org/10.1557/JMR.2000.0237
  18. K. S. Lee, K. S. Jang, J. H. Park, T. W. Kim, I. S. Han, and S. K. Woo, "Designing the Fiber Volume Ratio in SiC Fiber-Reinforced SiC Ceramic Composites," Mater. Des., 32 4394-401 (2011). https://doi.org/10.1016/j.matdes.2011.03.080
  19. S. H. Park, S. Lee, J. H. Yu, S. K. Woo, and K. S. Lee, "Fabrication of $Li_2ZrO_3$ Membrane and Evaluation on the Mechanical Properties Before and After $CO_2$ Separation," J. Korean Ceram. Soc., 44 [1] 58-64 (2007). https://doi.org/10.4191/KCERS.2007.44.1.058
  20. B. N. Nair, R. P. Burwood, V. J. Goh, K. Nakagawa, and T. Yamaguchi, "Lithium Based Ceramic Materials and Membranes for High Temperature $CO_2$ Separation," Prog. Mater. Sci., 54 511-41 (2009). https://doi.org/10.1016/j.pmatsci.2009.01.002
  21. B. R. Lawn, "Indentation of Ceramics with Spheres: A Century after Hertz," J. Am. Ceram. Soc., 81 [8] 1977-94 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  22. J. H. Ha, J. H. Kim, and D. K. Kim, "Elasticity and Thermal Conductivity of Porous Ceramics with Controlled Pore Structure," J. Ceram. Soc. Jpn., 112 [5] 1084-88 (2004).
  23. R. W. Rice, "Comparison of Stress Concentration Versus Minimum Solid Area Based Mechanical Property-Porosity Relation," J. Mater. Sci., 28 2187-90 (1993). https://doi.org/10.1007/BF00367582
  24. D. H. Lee and K. S. Lee, "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test," J. Korean Ceram. Soc., 48 [5] 396-403 (2011). https://doi.org/10.4191/kcers.2011.48.5.396
  25. A. Davison and M. Tinkham, "Phenomenological Equations for the Electrical Conductivity of Microscopically Inhomogeneous Materials," Phys. Rev., 13 [8] 3261-67 (1976). https://doi.org/10.1103/PhysRevB.13.3261