DOI QR코드

DOI QR Code

Fabrication and Machinability of Mullite-ZrO2-Al2TiO5 Ceramics

  • Shin, Young Been (Department of Advanced Materials Engineering, Dongeui University) ;
  • Lee, Won Jae (Department of Advanced Materials Engineering, Dongeui University) ;
  • Kim, Il Soo (Department of Advanced Materials Engineering, Dongeui University)
  • Received : 2015.08.18
  • Accepted : 2015.08.27
  • Published : 2015.11.30

Abstract

The machinability of materials is an important factor in engineering applications. Many ceramic components that have complex shapes require machining, typically using diamond tools, which leads to high production cost. Machinable ceramics containing h-BN have recently been developed, but these materials are very expensive because of high cost of raw materials and machining. Therefore the development of low-cost machinable ceramics is desirable. In this study, mullite-$ZrO_2$ ceramics were prepared additions of $Al_2TiO_5$. $ZrSiO_4$, $Al_2O_3$, and $Al_2TiO_5$ powders mixed at various molar ratios with sintering at 1400, 1500, and $1600^{\circ}C$ for 1 hr. Phase formation and microstructure of the sintered ceramics were observed by XRD and SEM, respectively. The machinability of each specimen was tested using the micro-hole machining method. The machinability results show that the ceramics sintered at temperatures over $1500^{\circ}C$ can be used as good low-cost machinable mullite-$ZrO_2-Al_2TiO_5$ ceramics.

Keywords

References

  1. P. Blake, T. Bifano, T. Dow, and R. O. Scattergood, "Precision Machining of Ceramic Materials," Ceram. Bull., 67 [6] 1038-43 (1988).
  2. C. K. Chyung, G. H. Beall, and D. G. Grossman, "Microstructure and Mechanical Properties of Mica Glass-Ceramics," pp. 1167-94 in 10th Int. Congress on Glass. Ed. by M. Kunugi, Kyoto, 1974.
  3. S. Taruta, R. Fujisawa, and K. Kitajima, "Preparation and Mechanical Properties of Machinable Alumina/Mica Composites," J. Eur. Ceram. Soc., 26 1687-93 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.258
  4. B. Ashouri Rad and P. Alizadeh, "Pressureless Sintering and Mechanical Properties of $SiO_2-Al_2O_3$-MgO-$K_2O$-$TiO_2$-F(CaO-$Na_2O$) Machinable Glass-Ceramics," Ceram. Int., 35 2775-80 (2009). https://doi.org/10.1016/j.ceramint.2009.03.027
  5. Y. Li, G. Quio, and Z. Jin, "Machinable $Al_2O_3$-BN Composite Ceramics with Strong Mechanical Properties," Mater. Res. Bull., 37 1401-9 (2002). https://doi.org/10.1016/S0025-5408(02)00786-9
  6. Y. S. Yoon, J. H. Lee, W. S. Cho, M. W. Cho, and E. S. Lee, "Mechanical Properties and Machinability of Machinable Ceramics (in Korean)," Ceramist, 6 [3] 12-7 (2003).
  7. B. Zhong, G. L. Zhao, X. X. Huang, L. Xia, X. H. Tang, S. C. Zhang, and G. W. Wen, "Microstructure and Mechanical properties of ZTA/BN Machinable Ceramics Fabricated by Reactive Hot Pressing," J. Eur. Ceram. Soc., 35 641-49 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.002
  8. S. Y. Beck, M. W. Cho, and W. S. Cho, "Mechanical Properties and End-Milling Characteristics of AlN-hBN Based Machinable Ceramics," J. Korean Ceram. Soc., 45 [1] 75-81 (2008). https://doi.org/10.4191/KCERS.2008.45.1.075
  9. H. Wu and W. Zhang, "Fabrication and Properties of $ZrB_2$-SiC-BN Machinable Ceramics," J. Eur. Ceram. Soc., 30 1035-42 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.022
  10. H. Y. Jin, W. Wang, J. Q. Gao, G. J. Qiao, and Z. H. Jin, "Study of Machinable AlN/BN Ceramic Composites," Mater. Lett., 60 190-93 (2006). https://doi.org/10.1016/j.matlet.2005.08.029
  11. A. Kovalcicova, J. Balko, C. Balazsi, P. Hvizdos, and J. Dusza, "Influence of h-BN Content on Mechanical and Tribological Properties of $Si_3N_4$/h-BN Ceramic Composites," J. Eur. Ceram. Soc., 34 3319-28 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.021
  12. J. H. Park, W. J. Lee, and I. S. Kim, "$Al_2TiO_5$-Machinable Ceramics Made by Reactive Sintering of $Al_2O_3$ and $TiO_2$," J. Korean Ceram. Soc., 47 [6] 498-502 (2010). https://doi.org/10.4191/KCERS.2010.47.6.498
  13. J. H. Park, D. S. Jung, W. J. Lee, and I. S. Kim, "Machinable Ceramics Made by the Reactive Sintering of PSZ, $Al_2O_3$ and $TiO_2$," J. Korean Ceram. Soc., 49 [6] 581-85 (2012). https://doi.org/10.4191/kcers.2012.49.6.581
  14. I. S. Kim, J. H. Park, W. J. Lee, and K. H. Lee, "Machinable SiC Ceramics with Addition of $Al_2TiO_5$," J. Korean Ceram. Soc., 50 [6] 372-77 (2013). https://doi.org/10.4191/kcers.2013.50.6.372
  15. T. Shimada, M. Mizuno, K. Katou, Y. Nurishi, M. Hashiba, O. Sakurada, D. Mizuno, and T. Ono, "Aluminium Titanate -Tetragonal Zirconia Composite with Low Thermal Expansion and High Strength Simultaneously," Solid State Ionics, 101-10, 1127-33 (1997).
  16. N. Claussen and J. W. Jahn, "Mechanical Properties of Sintered, in situ Reacted Mullite-zirconia Composites," J. Am. Ceram. Soc., 63 [3-4] 228-29 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10700.x
  17. P. Descamps, "High Temperature Characterization of Reaction Sintered Mullite-zirconia Composites," J. Am. Ceram. Soc., 74 2476-81 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06788.x
  18. I. S. Kim and H. W. Hennicke, "Mullit-$ZrO_2$-Keramik mit Zusatzen von Bentonit, Speckstein und MnO+$TiO_2$," Keram. Z., 43 466-68 (1991).
  19. J. G. Lee, "Sintering of Ceramics," pp. 146, Bando Press, Seoul, 1994.
  20. J. S. Wallace, "Microstructure and Property Development of in situ Reacted Mullite-$ZrO_2$ Composites," Adv. Ceram. Soc., 12 436-42 (1984).
  21. H. A. J. Thomas and R. Stevens, "Aluminium Titanate - A Literature Review," Br. Ceram Trans. J., 88 144-51 (1989).
  22. I. J. Kim and C. Zografou, "Thermal Shock Resistance of $Al_2TiO_5$ Ceramics Prepared from Electrofused Powders," J. Korean Ceram. Soc., 35 [10] 1061-69 (1998).