DOI QR코드

DOI QR Code

Particle Stabilized Wet Foam to Prepare SiO2-SiC Porous Ceramics by Colloidal Processing

  • Bhaskar, Subhasree (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Park, Jung Gyu (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Han, In Sub (Energy Materials Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Mi Jai (Ceramics for Display & Optics, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Lim, Tae Young (Ceramics for Display & Optics, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Ik Jin (Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
  • Received : 2015.09.04
  • Accepted : 2015.10.15
  • Published : 2015.11.30

Abstract

Porous ceramics with tailored pore size and shape are promising materials for the realization of a number of functional and structural properties. A novel method has been reported for the investigation of the role of SiC in the formation of $SiO_2$ foams by colloidal wet processing. Within a suitable pH range of 9.9 ~ 10.5 $SiO_2$, particles were partially hydrophobized using hexylamine as an amphiphile. Different mole ratios of the SiC solution were added to the surface modified $SiO_2$ suspension. The contact angle was found to be around $73^{\circ}$, with an adsorption free energy $6.8{\times}10^{-12}J$. The Laplace pressure of about 1.25 ~ 1.6 mPa was found to correspond to a wet foam stability of about 80 ~ 85%. The mechanical and thermal properties were analyzed for the sintered ceramics, with the highest compressive load observed at the mole ratio of 1:1.75. Hertzian indentations are used to evaluate the damage behavior under constrained loading conditions of $SiO_2$-SiC porous ceramics.

Keywords

References

  1. X. Wang, J. Liu, F. Hou, X. Lu, X. Sun, and Y. Zhou, "Manufacture of Porous SiC/C Ceramics with Excellent Damage Tolerance by Impregnation of LCPS into Carbonized Pinewood," J. Eur. Ceram. Soc., 35 1751-59 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.033
  2. X. Shen, Y. Zhai, Y. Sun, and H. Gu, "Preparation of Monodisperse Spherical $SiO_2$ by Microwave Hydrothermal Method and Kinetics of Dehydrated Hydroxyl," J. Mater. Sci. Tech., 26 [8] 711-14 (2010). https://doi.org/10.1016/S1005-0302(10)60111-9
  3. S. Liu, Y. P. Zeng, and D. Jiang, "Fabrication and Characterization of Cordierite-Bonded Porous SiC Ceramics," Ceram. Intl., 35 597-602 (2009). https://doi.org/10.1016/j.ceramint.2008.01.025
  4. S. P. Lee, J. O. Jin, and A. Kohyama, "Fabrication and Properties of Reaction Sintered SiC Based Materials," Key Eng. Mater., 261-63 1475-80 (2004). https://doi.org/10.4028/www.scientific.net/KEM.261-263.1475
  5. B. Liu, "Properties and Manufacturing Method of Silicon Carbide Ceramic New Materials," Appl. Mech. Mater., 416-17 1693-97 (2013). https://doi.org/10.4028/www.scientific.net/AMM.416-417.1693
  6. S. Suyama and Y. Itoh, "Strengthening Mechanism of High-Strength Reaction-Sintered Silicon Carbide," Key Eng. Mater., 484 89-97 (2011). https://doi.org/10.4028/www.scientific.net/KEM.484.89
  7. Y. Hirata Y, N. Matsunaga, and S. Sameshima, "Densification, Phases, Microstructures and Mechanical Properties of Liquid Phase-Sintered SiC," Key Eng. Mater., 484 124-29 (2011). https://doi.org/10.4028/www.scientific.net/KEM.484.124
  8. Q. Liu, F. Ye, Y. Gao, S. Liu, H. Yang, and Z. Zhou, "Devel-opment of Elongated 6H-SiC Grains in Reaction-Bonded Porous SiC Ceramics," Scr. Mater., 71 13-16 (2014). https://doi.org/10.1016/j.scriptamat.2013.09.021
  9. T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda, and Y. Takeda, "Stability Growth Condition for 3C-SiC Crystals by Solution Technique," Mater. Sci. Forum., 600-03 63-6 (2009). https://doi.org/10.4028/www.scientific.net/MSF.600-603.63
  10. J. Li, H. Lin, and J. Li, "Factors that Influence the Flexural Strength of SiC-based Porous Ceramics Used for Hot Gas Filter Support," J. Eur. Ceram. Soc., 31 825-31 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.033
  11. Y. Hirata, N. Matsunaga, N. Hidaka, T. Maeda, T. Arima, S. Sameshima, "Improvement of Strength, Weibull Modulus and Damage Tolerance of SiC," Mater. Sci. Forum., 561-65 489-94 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.489
  12. Y. Hirata, N. Matsunaga, N. Hidaka, S. Tabata, and S. Sameshima, "Processing of High Performance Silicon Carbide," Key Eng. Mater., 403 165-68 (2009). https://doi.org/10.4028/www.scientific.net/KEM.403.165
  13. K. Biswas, "Solid State Sintering of SiC-Ceramics," Mater. Sci. Forum., 624 71-89 (2009). https://doi.org/10.4028/www.scientific.net/MSF.624.71
  14. B. Wu, R. Yuan, and X. Fu, "Structural Characterization and Photocatalytic Activity of Hollow Binary $ZrO_2$/$TiO_2$ Oxide Fibers," J. Solid State Chem., 182 560-65 (2009). https://doi.org/10.1016/j.jssc.2008.11.030
  15. X. Wang, K. Wang, J. Kong, Y. Wang, and L. An, "Synthesis of Non-Oxide Porous Ceramics Using Random Copolymers as Precursors," J. Mater. Sci. Tech., 31 [1] 120-24 (2015). https://doi.org/10.1016/j.jmst.2014.04.008
  16. Y. W. Kim, C. Wang, and C. B. Park, "Processing of Porous Silicon Oxycarbide Ceramics from Extruded Blends of Polysiloxane and Polymer Microbead," J. Ceram. Soc. Jpn., 115 [7] 419-24 (2007). https://doi.org/10.2109/jcersj.115.419
  17. J. H. Eom, Y. W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  18. A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics: A review," J. Am. Ceram. Soc., 89 [6] 1771-89 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  19. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, "Stabilization of Foams with Inorganic Colloidal Particles," Langmuir, 22 10983-88 (2006). https://doi.org/10.1021/la061825a
  20. A. Pokhrel, D. N. Seo, T. L. Seung, and I. J. Kim, "Processing of Porous Ceramics by Direct Foaming: A Review," J. Korean Ceram. Soc., 50 [2] 1-10 (2013). https://doi.org/10.4191/kcers.2013.50.1.1
  21. S. Bhaskar, G. Y. Cho, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Micro Porous $SiO_2$-SiC Ceramics from Particle Stabilized Foams by Direct Foaming," J. Ceram. Soc. Japan, 123 [5] 378-82 (2015). https://doi.org/10.2109/jcersj2.123.378
  22. B. R. Lawn, N. P. Padture, H. Cai, and F. Guiberteau, "Making Ceramics 'Ductile'," Science, 263 1114-6 (1994). https://doi.org/10.1126/science.263.5150.1114
  23. H. Cai, M. A. S. Kalceff, and B. R. Lawn, "Deformation and Fracture of Mica Containing Glass-Ceramics in Hertzian Contacts," J. Mater. Res., 9 762-70 (1994). https://doi.org/10.1557/JMR.1994.0762
  24. B. R. Lawn, "Indentation of Ceramics with Spheres: a Century after Hertz," J. Am. Ceram. Soc., 81 ,1977-94 (1998).
  25. S. Bhaskar, J. G. Park, S. W. Kim, H. T. Kim, and I. J. Kim, "Effect of Surfactant on Adsorption Free Energy and Laplace Pressure on Wet Foam Stability to Porous Ceramics," J. Ceram. Pro. Res., 16 [1] 1-4 (2015).
  26. S. Bhaskar, J. G. Park, G. Y. Cho, S. Y. Kim, and I. J. Kim, "Wet Foam Stability and Tailoring Microstructure of Porous Ceramics using Polymer Beads," Adv. Appl. Ceram., 114 [6] 333-37 (2015). https://doi.org/10.1179/1743676115Y.0000000004
  27. W. Zhao, S. Bhaskar, J. G. Park, S. Y. Kim, I. S. Han, and I. J. Kim, "Particle-Stabilized Wet Foams to Porous Ceramics by Direct Foaming," J. Ceram. Pro. Res., 15 [6] 503-7 (2014).
  28. S. Bhaskar, J. G. Park, G. Y. Cho, D. N. Seo, and I. J. Kim, "Influence of $SiO_2$ Content on Wet Foam Stability for Creation of Porous Ceramics," J. Korean Ceram. Soc., 51 [5] 511-14 (2014). https://doi.org/10.4191/kcers.2014.51.5.511
  29. A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort, and L. J. Gauckler, "Materials from Foams and Emulsions Stabilized by Colloidal Particles," J. Mater. Chem., 17 3283-89 (2007). https://doi.org/10.1039/b703255b
  30. K. D. Danov and P. A. Kralchevsky, "The Standard Free Energy of Surfactant Adsorption at Air/Water and Oil/Water Interfaces: Theoritical vs. Empirical Approaches," Colloid Journal, 74 [2] 172-85 (2012). https://doi.org/10.1134/S1061933X12020032