DOI QR코드

DOI QR Code

Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports

  • Eom, Jung-Hye (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science)
  • Received : 2015.09.15
  • Accepted : 2015.10.13
  • Published : 2015.11.30

Abstract

The effect of $SrCO_3$ content on the microstructure, porosity, flexural strength, and pore size distribution of clay-based membrane supports was investigated. Green compacts prepared from low cost materials such as kaolin, bentonite, talc, sodium borate, and strontium carbonate were sintered at $1000^{\circ}C$ for 8 h in air. It was possible to control the porosity of the clay-based membrane supports within the range of 33% to 37% by adjusting the $SrCO_3$ content. The flexural strength of the clay-based membrane supports was found to strongly depend on their porosity. In turn, the porosity was affected by the $SrCO_3$ content. The average pore size and flexural strength of the clay-based membrane supports containing 4 wt% $SrCO_3$ were $0.62{\mu}m$ and 33 MPa at 34% porosity.

Keywords

References

  1. D. S. Bae, D. S. Cheong, K. S. Han, and S. H. Choi, "Fabrication and Microstructure of $Al_2O_3$-$TiO_2$ Composite Membranes with Ultrafine Pores," Ceram. Int., 24 25-30 (1998). https://doi.org/10.1016/S0272-8842(96)00072-7
  2. T. B. Kim, S. Y. Choi, and G. D. Kim, "Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (in Korean)," J. Korean Ceram. Soc., 42 [3] 165-70 (2005). https://doi.org/10.4191/KCERS.2005.42.3.165
  3. D. Vasanth, G. Pugazhenti, and R. Uppaluri, "Fabrication and Properties of Low Cost Ceramic Microfiltration Membranes for Separation of Oil and Bacteria from its Solution," J. Membr. Sci., 379 [1-2] 154-63 (2011). https://doi.org/10.1016/j.memsci.2011.05.050
  4. M.-M. Lorente-Ayza, S. Mestre, M. Menendez, and E. Sanchez, "Comparison of Extruded and Pressed Low Cost Ceramic Supports for Microfiltration Membranes," J. Eur. Ceram. Soc., 35 3681-91 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.010
  5. I. H. Wi, D. W. Shin, K. S. Han, J. H. Kim, W. S. Cho, and K. T. Hwang, "Fabrication of Boehmite-based UF Ceramic Membrane (in Korean)," J. Korean Ceram. Soc., 51 [4] 337-43 (2014). https://doi.org/10.4191/kcers.2014.51.4.337
  6. B. S. Bae, J. H. Ha, and I. H. Song, "Characterization and Microstructure of an Extruded Flat-Tubular-Type Alumina Filter (in Korean)," J. Korean Ceram. Soc., 51 [5] 406-12 (2014). https://doi.org/10.4191/kcers.2014.51.5.406
  7. D. Song and M. Jung, "Gas Permeation of $Y_2O_3$-SiC Composite Membrane," J. Korean Ceram. Soc., 52 [4] 234-36 (2015). https://doi.org/10.4191/kcers.2015.52.4.234
  8. I. H. Wi, D. W. Shin, K. S. Han, J. H. Kim, W. S. Cho, and K. T. Hwang, "Characteristics of the Non-electric Water Purification System Using Onggi Filter (in Korean)," J. Korean Ceram. Soc., 51 [4] 332-36 (2014). https://doi.org/10.4191/kcers.2014.51.4.332
  9. Y. H. Wang, X. Q. Liu, and G. Y. Meng, "Dispersion and Stability of 8 mol.% Yttria Stabilized Zirconia Suspensions for Dip-Coating Filtration Membranes," Ceram. Int., 33 1025-31 (2007). https://doi.org/10.1016/j.ceramint.2006.03.011
  10. K. A. Defriend, M. R. Wiesner, and A. R. Barron, "Alumina and Aluminate Ultrafiltration Membranes Derived Alumina Nanoparticles," J. Membr. Sci., 224 [1-2] 11-28 (2003). https://doi.org/10.1016/S0376-7388(03)00344-2
  11. G. T. Kim and S. H. Hyun, "Preparation and Characterization of $TiO_2$ Ultrafiltration Membranes for Reclamation of Waste Lubricating Oil (in Korean)," J. Korean Ceram. Soc., 36 [3] 244-54 (1999).
  12. S. Kroll, L. Treccani, K. Rezwan, and G. Grathwohl, "Development and Characterization of Functionalized Ceramic Microtubes for Bacteria Filtration," J. Membr. Sci., 365 [1-2] 447-55 (2010). https://doi.org/10.1016/j.memsci.2010.09.045
  13. J. Cui, X. Zhang, H. Liu, S. Liu, and K. L. Yeung, "Preparation and Application of Zeolite/Ceramic Microfiltration Membranes for Treatment of Oil Contaminated Water," J. Membr. Sci., 325 [1] 420-26 (2008). https://doi.org/10.1016/j.memsci.2008.08.015
  14. M. R. Weir, E. Rutinduka, C. Detellier, C. Y. Feng, Q. Wang, T. Matsuura, and R. L. V. Mao, "Fabrication, Characterization and Preliminary Testing of All-Inorganic Ultrafiltration Membranes Composed Entirely of a Naturally Occurring Sepiolite Clay Mineral," J. Membr. Sci., 182 [1-2] 41-50 (2001). https://doi.org/10.1016/S0376-7388(00)00547-0
  15. S. Khemakhem, A. Larbot, and R. B. Amar, "Study of Performances of Ceramic Microfiltration Membrane from Tunisian Clay Applied to Cuttlefish Effluents Treatment," Desalination, 200 [1-3] 307-9 (2006). https://doi.org/10.1016/j.desal.2006.03.327
  16. N. Saffaj, M. Persin, S. A. Younsi, A. Albizane, M. Cretin, and A. Larbot, "Elaboration and Characterization of Microfiltration and Ultrafiltration Membranes Deposited on Raw Support Prepared from Natural Moroccan Clay: Application to Filtration of Solution Containing Dyes and Salts," Appl. Clay Sci., 31 [1-2] 110-19 (2006). https://doi.org/10.1016/j.clay.2005.07.002
  17. T. Mohammadi, A. Pak, M. Karbassian, and M. Golshan, "Effect of Operating Conditions on Microfiltration of an Oil-Water Emulsion by a Kaolin Membrane," Desalination, 168 201-5 (2004). https://doi.org/10.1016/j.desal.2004.06.188
  18. R. D. Sahnoun and S. Baklouti, "Characterization of Flat Ceramic Membrane Supports Prepared with Kaolin-Phosphoric Acid-Starch," Appl. Clay Sci., 83-84 399-404 (2013). https://doi.org/10.1016/j.clay.2013.07.015
  19. B. Ghouil, A. Harabi, F. Bouzerara, B. Boudaira, A. Guechi, M. M. Demir, and A. Figoli, "Development and Characterization of Tubular Composite Ceramic Membranes using Natural Alumino-Silicates for Microfiltration Applications," Mater. Charact., 103 18-27 (2015). https://doi.org/10.1016/j.matchar.2015.03.009
  20. P. B. Belibi, M. M. G. Nguemtchouin, M. Rivallin, J. N. Nsami, S. Sieliechi, S. Cerneaux, M. B. Vgassoum, and M. Cretin, "Microfiltration Ceramic Membranes from Local Cameroonian Clay Applicable to Water Treatment," Ceram. Int., 41 2752-59 (2015). https://doi.org/10.1016/j.ceramint.2014.10.090
  21. J. H. Eom, Y.-W. Kim, and I. H. Song, "Processing of Kaolin-Based Microfiltration Membranes," J. Korean Ceram. Soc., 50 [5] 341-47 (2013). https://doi.org/10.4191/kcers.2013.50.5.341
  22. Y. I. Lee, J. H. Eom, Y.-W. Kim, and I. H. Song, "Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports," J. Korean Ceram. Soc., 52 [3] 180-85 (2015). https://doi.org/10.4191/kcers.2015.52.3.180
  23. J. M. Field, P. S. Dear, and J. J. Brown, "Phase Equilibria in the System BaO-SrO-$SiO_2$," J. Am. Ceram. Soc., 55 [12] 585-88 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13448.x
  24. K. Y. Lim, Y.-W. Kim, and I. H. Song, "Porous Sodium Borate-Bonded SiC Ceramics," Ceram. Int., 39 6827-34 (2013). https://doi.org/10.1016/j.ceramint.2013.02.014
  25. J.-H. Eom, Y.-W. Kim, S.-H. Yoon, and I. H. Song, "Low-Cost Clay-Based Membranes for Oily Wastewater Treatment," J. Ceram. Soc. Jpn., 122, 788-94 (2014). https://doi.org/10.2109/jcersj2.122.788
  26. J.-H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, "Processing and Properties of Polysiloxane-Derived Porous Silicon Carbide Ceramics using Hollow Microspheres as Templates," J. Eur. Ceram. Soc., 28 1029-35 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.009
  27. B. V. M. Kumar and Y.-W. Kim, "Processing of Polysiloxane-Derived Porous Ceramics: A Review." Sci. Technol. Adv. Mater., 11 044303 (2010). https://doi.org/10.1088/1468-6996/11/4/044303
  28. J.-H. Eom, Y.-W. Kim, and S. Raju, "Processing and Properties of Macroporous Silicon Carbide Ceramics: A Review," J. Asian Ceram. Soc., 1 220-42 (2013). https://doi.org/10.1016/j.jascer.2013.07.003
  29. I.-H. Song, I.-M. Kwon, H. D. Kim, and Y.-W. Kim, "Processing of Mirocellular Silicon Carbide Ceramics with a Duplex Pore Structure," J. Eur. Ceram. Soc., 30 2671-76 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  30. Y. I. Lee, J. H. Eom, Y.-W. Kim, and I. H. Song, "Effect of Clay-Mineral Composition on Flexural Strength of Clay-Based Membranes," J. Korean Ceram. Soc., 51 [5] 380-85 (2014). https://doi.org/10.4191/kcers.2014.51.5.380
  31. D. Vasanth, R. Uppaluri, and G. Pugazhenthi, "Influence of Sintering Temperature on the Properties of Porous Ceramic Supports Prepared by Uniaxial Dry Compaction Method Using Low-Cost Raw Materials for Membrane Applications," Sep. Sci. Technol., 46 1241-49 (2011). https://doi.org/10.1080/01496395.2011.556097
  32. S. Emani, R. Uppaluri, and M. K. Purkait, "Preparation and Characterization of Low Cost Ceramic Membranes for Mosambi Juice Clarification," Desalination, 317 32-40 (2013). https://doi.org/10.1016/j.desal.2013.02.024