DOI QR코드

DOI QR Code

Microwave-Modified Sol-Gel Process for Microcystalline KY(WO4)2: Ho3+/Yb3+ Phosphors and their Upconversion Photoluminescence Properties

  • Lim, Chang Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2015.08.10
  • Accepted : 2015.11.16
  • Published : 2015.11.30

Abstract

$KY_{1-x}(WO_4)_2:Ho^{3+}/Yb^{3+}$ yellow phosphors with doping concentrations of $Ho^{3+}$ and $Yb^{3+}$ ($x=Ho^{3+}+Yb^{3+}$, $Ho^{3+}=0.05$, 0.1, 0.2 and $Yb^{3+}=0.2$, 0.45) were successfully prepared using the microwave-modified sol-gel method; their upconversion (UC) photoluminescence properties were investigated in detail. Well-crystallized particles, formed after heat-treatment at $900^{\circ}C$ for 16 h, showed a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the UC $KY_{0.7}(WO_4)_2:Ho_{0.1}Yb_{0.2}$ and $KY_{0.5}(WO_4)_2Ho_{0.05}Yb_{0.45}$ particles exhibited excellent yellow emissions based on a strong 545-nm emission band in the green region and a very strong 655-nm emission band in the red region. Pump power dependence and Commission Internationale de L'Eclairage chromaticity of the UC emission intensity were evaluated. The spectroscopic properties were examined comparatively using Raman spectroscopy.

Keywords

References

  1. M. V. DaCosta, S. Doughan, and U. J. Krull, "Lanthanide Upconversion Nanoparticles and Application in Bioassays and Bioimaging: A Review," Analyca Chimica Acta, 832 [3] 1-33 (2014). https://doi.org/10.1016/j.aca.2014.04.030
  2. M. Lin, Y. Zho, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, and T. Lu, "Recent Advances in Synthesis and Surface Modification of Lanthanide-doped Upconversion Nanoparticles for Biomedical Napplications," Biotechnol. Adv., 30 [6] 1551-61 (2012). https://doi.org/10.1016/j.biotechadv.2012.04.009
  3. M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, "Upconversion Nanoparticles: Synthesis, Surface Modification and Biological Applications," Nanomed.: Nanotech. Biol. Med., 7 [6] 710-29 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  4. L. Li, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, and X. Xu, "Synthesis and Luminescence Properties of High Brightness MLa$(WO_4)_2$:$Eu^{3+}$ (M=Li, Na, K) and NaRE$(WO_4)_2$:$Eu^{3+}$ (RE=Gd, Y, Lu) Red Phosphors," J. Lumin., 143 [1] 14-20 (2013). https://doi.org/10.1016/j.jlumin.2013.04.031
  5. C. Ming, F. Song, and L. Yan, "Spectroscopic Study and Green Upconversion of $Pr^{3+}$/$Yb^{3+}$-Codoped NaY$(WO_4)_2$ Crystal," Opt. Commun., 286 [8] 217-20 (2013). https://doi.org/10.1016/j.optcom.2012.08.095
  6. N. Xue, X. Fan, Z. Wang, and M. Wang, "Synthesis Process and the Luminescence Properties of Rare Earth Doped NaLa$(WO_4)_2$ Nanoparticles," J. Phys. Chem. Sol., 69 [8] 1891 (2008). https://doi.org/10.1016/j.jpcs.2008.01.015
  7. Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin, and Y. Wang, "Upconversion Luminescence of $Ho^{3+}$ Sensitized by $Yb^{3+}$ in Transparent Glass Ceramic Embedding $BaYF_5$ Nanocrystals," Mater. Res. Bull., 45 [8] 1017-20 (2010). https://doi.org/10.1016/j.materresbull.2010.04.004
  8. W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Xia, B. Dong, R. Hua, X. Zhang, and B. Chen, "Laser Induced Thermal Effect on Upconversion Luminescence and Temperature-Dependent Upconversion Mechanism in $Ho^{3+}$/$Yb^{3+}$-Codoped $Gd_2(WO_4)_3$ Phosphor," Opt. Mater., 35 [7] 1487-92 (2013). https://doi.org/10.1016/j.optmat.2013.03.008
  9. W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, and W. Cao, "Optical Temperature Sensing through the Upconversion Luminescence from $Ho^{3+}$/$Yb^{3+}$ Codoped Ca$WO_4$," Sensors and Act. B:Chem., 188 [11] 1096-100 (2013). https://doi.org/10.1016/j.snb.2013.07.094
  10. H. Du, Y. Lan, Z. Zhiguo, and J. Sun, "Upconversion Luminescence of $Yb^{3+}$/$Ho^{3+}$/Er3+/$Tm^{3+}$ Co-doped KGd$(WO_4)_2$ Powders," J. Rare Earths, 28 [5] 697-700 (2010). https://doi.org/10.1016/S1002-0721(09)60182-4
  11. X. Liu, W. Xiang, F. Chen, W. Zhang, and Z. Hu, "Synthesis and Photoluminescence of $Tb^{3+}$ Activated NaY$(WO_4)_2$ Phosphors," Mater. Res. Bull., 47 [11] 3417-21 (2012). https://doi.org/10.1016/j.materresbull.2012.07.012
  12. X. Liu, W. Xiang, F. Chen, Z. Hu, and W. Zhang, "Synthesis and Photoluminescence Characteristics of $Dy^{3+}$ Doped NaY$(WO_4)_2$ Phosphors," Mater. Res. Bull., 48 [2] 281-85 (2013). https://doi.org/10.1016/j.materresbull.2012.10.050
  13. N. Xue, X. Fan, Z. Wang, and M. Wang, "Synthesis Process and Luminescence Properties of $Ln^{3+}$ Doped NaY$(WO_4)_2$ Nanoparticles," Mater. Lett., 61 [7] 1576-79 (2007). https://doi.org/10.1016/j.matlet.2006.07.082
  14. X. Yu, Y. Qin, M. Gao, L. Duan, Z. Jiang, L. Gou, P. Zhao, and Z. Li, "Hydrothermal Synthesis and Upconversion Luminescence of NaGd$(WO_4)_2$ Co-doped with $Ho^{3+}$ and $Yb^{3+}$," J. Lumin., 153 [9] 1-4 (2014). https://doi.org/10.1016/j.jlumin.2014.02.033
  15. S. Huang, D. Wang, Y. Wang, L. Wang, X. Zhang, and P. Yang, "Self-Assembled Three-Dimensional NaY$(WO_4)_2$:$Ln^{3+}$ Architectures: Hydothermal Synthesis, Growth Mechanism and Luminescence Properties," J. Alloys Compd., 529 [7]140-47 (2012). https://doi.org/10.1016/j.jallcom.2012.02.156
  16. J. Liao, B. Qiu, and H. Lai, "Synthesis and Luminesecnce Properties of $Tb^{3+}$:NaGd$(WO_4)_2$ Novel Green Phosphors," J. Lumin., 129 [7] 668-71 (2009). https://doi.org/10.1016/j.jlumin.2009.01.016
  17. X. Yu, M. Gao, J. Li, L. Duan, N. Cao, Z. Jiang, A. Hao, P. Zhao, and J. Fan, "Near Infrared to Visible Upconversion Emission in $Er^{3+}/Yb^{3+}$ Co-doped NaGd$(WO_4)_2$ Nanoparticles Obtained by Hydrothermal Method," J. Lumin., 154 [10] 111-15 (2014). https://doi.org/10.1016/j.jlumin.2014.04.016
  18. J. Gu, Y. Zhu, H. Li, S. Xiong, X. Zhang, X. Wang, X. Liu, and Y. Qian, "Morphology Controllable Synthesis and Luminescence Properties of NaLa$(WO_4)_2$:Eu Microcrystals," Solid State Sci., 12 [7] 1192-98 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.03.015
  19. D. Thangaraju, A. Durairajan, D. Balaji, and S. M. Babu, "Synthesis and Characterization of Monoclinic KGd$(WO_4)_2$ Particles for Non-Cubic Transparent Ceramics," Opt. Mater., 35 [4] 753-56 (2013). https://doi.org/10.1016/j.optmat.2012.09.018
  20. J. Gu, Y. Zhu, H. Li, X. Zhang, and Y. Qian, "Uniform $Ln^{3+}$($Eu^{3+}$, $Tb^{3+}$) Doped NaLa$(WO_4)_2$ Nanocrystals: Synthesis, Characterization, and Optical Properties," J. Solid State Chem., 183 [3] 497-503 (2010). https://doi.org/10.1016/j.jssc.2009.12.019
  21. P. Pazik, A. Zych, and W. Strek, "Luminescence Properties of $Eu^{3+}$:KGd$(WO_4)_2$ Nnocrystallites," Mater. Chem. Phys., 115 [2-3] 536-40 (2009). https://doi.org/10.1016/j.matchemphys.2008.11.065
  22. A. Durairajan, D. Thangaraju, D. Balaji, and S. M. Babu, "Sol-Gel Synthesis and Characterizations of Crystalline NaGd$(WO_4)_2$ Powder for Anisotropic Transparent Ceramic Laser Application," Opt. Mater., 35 [4] 740-43 (2013). https://doi.org/10.1016/j.optmat.2012.08.018
  23. L. Macalik, P. E. Tomaszewski, R. Lisiecki, and J. Hanuza, "The Crystal Structure, Vibrational and Luminescence Properties of the Nanocrystlline KEu$(WO_4)_2$ and KGd$(WO_4)_2$: $Eu^{3+}$ Obtained by the Pechini Method," J. Solid State Chem., 181 [10] 2591-2600 (2008). https://doi.org/10.1016/j.jssc.2008.06.026
  24. Z. Lu and T. Wanjun, "Synthesis and Luminescence Properties of $Eu^{3+}$-Activated NaLa($MoO_4$)($WO_4$) Phosphor," Ceram. Int., 38 [1] 837-40 (2012). https://doi.org/10.1016/j.ceramint.2011.06.047
  25. X. Qian, X. Pu, D. Zhang, L. Li, M. Li, and S. Wu, "Combustion Synthesis and Luminescence Properties of $NaY_{1-x}\;Eu_x(WO_4)_2$ Phosphors," J. Lumin., 131 [8] 1692-95 (2011). https://doi.org/10.1016/j.jlumin.2011.04.007
  26. S. Garcia-revilla, R. Valiente, Y. E. Romanyuk, and M. Pollnau, "Temporal Dynamics of Upconversion Luminescence in $Er^{3+}$, $Yb^{3+}$ Co-doped Crystalline KY$(WO_4)_2$ Thin Films," J. Lumin., 128 [5-6] 934-36 (2008). https://doi.org/10.1016/j.jlumin.2007.12.025
  27. C. S. Lim, "Cyclic MAM Synthesis and Upconversion Photoluminescence Properties of $CaMoO_4:Er^{3+}/Yb^{3+}$ Particles," Mater. Res. Bull., 47 [12] 4220-25 (2012). https://doi.org/10.1016/j.materresbull.2012.09.029
  28. V. L. Bekenev, O. Y. Khyzhun, and V. V. Atuchin, "Electronic Structure of Monoclinic ${\alpha}$-KY$(WO_4)_2$ Tungstates as Determined from First-Principles FP-LAPW Calculations and X-ray Spectroscopy Studies," J. Alloys Compd., 485 [1] 51-8 (2009). https://doi.org/10.1016/j.jallcom.2009.06.112
  29. R. D. Shanan, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst. A, 32 [3] 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  30. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, and S. Xia, "Visible Upconversion in Rare Earth-doped $Gd_2O_3$ Nanocrystals," J. Phys. Chem. B, 108 [10] 19205-9 (2004). https://doi.org/10.1021/jp048072q
  31. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, "The Modulated Structure and Frequency Upconversion Properties of $CaLa_2(MoO_4)_4$:$Ho^{3+}$/$Yb^{3+}$ Phosphors Prepared by Microwave Synthesis," Phys. Chem. Chem. Phys., 17 [9] 19278-87 (2015) https://doi.org/10.1039/C5CP03054D
  32. Y. Xu, Y. Wang, L. Shi, L. Xing, and X. Tan, "Bright White Upconversion Luminescence in $Ho^{3+}$/$Yb^{3+}$/$Tm^{3+}$ Triple Doped Ca$WO_4$ Polycrystals," Opt. Laser Tech., 54 [1] 50-2 (2013). https://doi.org/10.1016/j.optlastec.2013.05.005
  33. X. Li, Q. Nie, S. Dai, T. Xu, L. Lu, and X. Zhang, "Energy Transfer and Frequency Upconversion in $Ho^{3+}$/$Yb^{3+}$ Codoped Bismuth-Germanate Glasses," J. Alloys Compd., 454 [1-2] 510-14 (2008). https://doi.org/10.1016/j.jallcom.2007.02.143

Cited by

  1. Up- and Down-Conversion Luminescence of LuNbO4:Yb3+, Er3+ Phosphors vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.08