DOI QR코드

DOI QR Code

Flight Technical Error Modeling for UAV supported by Local Area Differential GNSS

LADGNSS 항법지원을 받는 무인항공기의 비행 기술 오차 모델링 기법

  • Kim, Kiwan (Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Minchan (Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Dong-Kyeong (Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jiyun (Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2014.12.10
  • Accepted : 2015.11.18
  • Published : 2015.12.01

Abstract

Navigation accuracy, integrity, and safety of commercial Unmanned Aerial Vehicle (UAV) is becoming crucial as utilization of UAV in commercial applications is expected to increase. Recently, the concept of Local-Area Differential GNSS (LADGNSS) which can provide navigation accuracy and integrity of UAV was proposed. LADGNSS can provide differential corrections and separation distances for precise and safe operation of the UAV. In order to derive separation distances between UAVs, modeling of Flight Technical Error (FTE) is required. In most cases, FTE for civil aircraft has been assumed to be zero-mean normal distribution. However, this assumption can cause overconservatism especially for UAV, because UAV may use control and navigation equipments in wider performance range and follow more diverse path than standard airway for civil aircraft. In this research, flight experiments were carried out to understand the characteristics of FTE distribution. Also, this paper proposes to use Johnson distribution which can better describe heavy-tailed and skewed FTE data. Futhermore, Kolmogorov-Smirnov and Anderson-Darling tests were conducted to evaluate the goodness of fit of Johnson model.

민수용 무인항공기의 활용이 확대될 것으로 기대되면서 무인항공기의 항법 정확도와 항법 무결성의 보장에 대한 문제가 중요해지고 있다. 최근 민수용 무인항공기를 대상으로 항법 정확도와 항법 무결성을 보장하는 지역보강항법시스템(Local-Area Differential Global Navigation Satellite System, LADGNSS)의 개념이 제시된 바 있다. LADGNSS는 무인항공기간의 충돌을 방지하기 위한 최소분리거리 정보를 제공하여 무인항공기의 안전을 보장한다. 최소분리거리를 산출하기 위해서는 무인항공기의 비행기술오차(Flight Technical Error)에 대한 정보가 필요한데, 이 오차는 기존 유인항공기 분야에서 평균이 0인 정규분포로 모델링 되어 왔다. 하지만 무인항공기의 경우 유인항공기와 다르게 제어/항법장비나 비행경로 등에 대한 표준이 다변화 될 것으로 예상되며 비행기술오차에 대해서 일괄적으로 평균이 0인 정규분포를 가정하는 것은 무결성 정보 산출 시 과도한 보수성을 야기할 수 있다. 본 연구에서는 비행실험을 통해 무인항공기의 비행기술오차를 수집하고, 해당 오차의 특성을 잘 묘사할 수 있는 Johnson 분포 모델을 이용해 오차를 모델링 하였다. 오차모델에 대한 적합성을 평가하기 위해서 Kolmogorov-Smirnov Test와 Anderson-Darling Test를 수행하였다.

Keywords

References

  1. "HALE Certification and Regulatory Roadmap," New Mexico State University UAV Technical Analysis and Applications Center (TAAC)
  2. "CAP 722 - UAV Operations in UK" Civil Aviation Authority. United Kingdom
  3. R. Austin, "Unmanned Aircraft Systems: UAV Design, Development and Deployment," Hoboken, NJ: Wiley. doi:10.1002/9780470664797
  4. G. Chowdhary, E. N. Johnson, D. Magree, A. Wu, and A. Shein, "GPS-denied Indoor and Outdoor Monocular Vision Aided Navigation and Control of Unmanned Aircraft," Journal of Field Robotics, vol. 30, no. 3, pp. 415-438, 2013 https://doi.org/10.1002/rob.21454
  5. C. Coopmans, "AggieNav: A Small, Well Integrated Navigation Sensor System for Small Unmanned Aerial Vehicles", in Proceedings of the 2009 ASME/IEEE International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2009.
  6. R. Sabatini, L. RodrguezSalazar, A. Kaharkar, C. Bartel, T. Shaid, D. Zammit- Mangion, and H. Jia, "Low-Cost Navigation and Guidance Systems for Unmanned Aerial Vehicles Part 1: Vision-Based and Integrated Sensors," Annual of Navigation Journal, vol. 19, pp. 71-98, 2012. https://doi.org/10.2478/v10367-012-0019-3
  7. Minimum Operational Performance Standards for GPS Local Area Augmentation System Airborne Equipment. Washington, D.C., RTCA SC-159, DO-253C, Dec. 16, 2008.
  8. M. Joerger, S. Stevanovic, et al, "Differential RAIM and Relative RAIM for Orbit Ephemeris Fault Detection," Proc. IEEE/ION PLANS 2012, Myrtle Beach, SC, April 23-26, 2012, pp. 174-197.
  9. S. Pullen, P. Enge, and J. Lee, "High-Integrity Local-Area Differential GNSS Architectures Optimized to Support Unmanned Aerial Vehicles (UAVs)," Proceedings of ION ITM 2013, San Diego, CA, Jan. 28-30, 2013.
  10. S. Pullen, "Managing Separation of Unmanned Aerial Vehicles Using High-Integrity GNSS Navigation," Proceedings of EIWAC 2013, Tokyo, Japan, Feb. 19-21, 2013.
  11. S. Pullen, and J. Lee, "Guidance Navigation, and Separation Assurance for Local-Area UAV Net-works: Putting the Pieces Together," Proceedings of ION Pacific PNT 2013, Honolulu, HI, Apr. 23-25, 2013.
  12. M. Kim, K. Kim, and J. Lee, "High Integrity GNSS Navigation and Safe Separation Distance to Support Local-Area UAV Networks," Proceedings of ION GNSS 2014, Tampa, FL, Sep. 8-12, 2014.
  13. ICAO Doc 9613, Performance-based Navigation (PBN) Manual, 2008, ISBN 978-92-9231-198-8
  14. B. S. Levy, P. Som, and R. Greenhaw, "Analysis of Flight Technical Error on Straight, Final Ap-proach Segments," 59th Annual Meeting Proceedings of ION. 2003; 456-467.
  15. I.D. Hill, R. Hill, and R.L. Holder, "Fitting Johnson curves by moments." Applied Statistics, 1976, AS99. https://doi.org/10.2307/2346692
  16. Jones, D. L. 2014. Johnson Curve Toolbox for Matlab: analysis of non-normal data using the Johnson family of distributions. College of Marine Science, University of South Florida, St. Petersburg, Florida, USA.