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ABSTRACT 

This short article compares different solution methods for a basic RBC model (Hansen, 1985). We solve and simulate 
the model using two main algorithms: the methods of perturbation and projection, respectively. One novelty is that we 
offer a type of the hybrid method: we compute easily a second-order approximation to decision rules and use that ap-
proximation as an initial guess for finding Chebyshev polynomials. We also find that the second-order perturbation 
method is most competitive in terms of accuracy for standard RBC model. 
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1.  INTRODUCTION 

One of the most important applications of the sto-
chastic neoclassical growth model over the past 30 years 
has been to the analysis of business cycles, i.e. the recur-
rent fluctuations in economic activity. The real business 
cycle (RBC) approach, pioneered by the seminal work 
of Kydland and Prescott (1982) and Long and Plosser 
(1983), employs the neoclassical growth model with 
recurrent aggregate productivity shocks. As Cooley (1995) 
puts it in his preface, the RBC approach combines gen-
eral equilibrium theory with a set of tools for computing 
equilibria of artificial economies and studying their em-
pirical properties.  

Its conceptual simplicity notwithstanding, the RBC 
theory argues that exogenous technology shocks account 
for most of business cycles. Thanks to its relative suc-
cess in matching certain statistical moments of macro 
aggregates such as employment, consumption, invest-
ment and etc. the RBC theory has become the work-
horse for the quantitative analysis of business cycles. In 
particular, the numerical simulation of dynamic general 
equilibrium models has become a standard procedure for 
macroeconomic research over the past 30 years. The 
methodological innovation the RBC theory provided us 

with has spurred the rapid development of a variety of 
computational solution methods for dynamic equilib-
rium models. 

This short article comes as a witness to illustrate 
the methodological contribution of the RBC theory. We 
present and compare different solution methods for 
computing one of basic RBC models, particularly, Han-
sen (1985) indivisible RBC model. Hansen’s model, 
regarded as one of the most successful RBC models in 
terms of its conceptual simplicity and empirical perfor-
mance, is the stochastic neoclassical growth model with 
indivisible labor choices. Nevertheless, to our best know-
ledge, little is reported about the relative performance of 
new solution methods for computing Hansen’s business-
cycle model.  

We solve and simulate the model using four differ-
ent algorithms: log-linearization, second-order perturba-
tion, the Chebyshev projection method that uses first-
order approximation to model solutions as an initial 
guess, and the Chebyshev projection method that uses 
second-order approximation to model solutions as an 
initial guess. One novelty is that we offer a type of the 
hybrid method: we compute easily a second-order ap-
proximation to all relevant optimal policy functions and 
use it as an initial guess for finding Chebyshev polyno-
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mials. This second-order approximation is such a good 
guess that Chebyshev polynomials will converge rapidly. 
This type of the hybrid method is reminiscent of the so-
called value function perturbation proposed by Caldara 
et al. (2012). The value function perturbation uses a 
second-order approximation to the value function as an 
initial guess for value function iteration.  

We highlight two main results from our exercise. 
First, the perturbation method delivers a high level of 
accuracy and is most competitive in terms of computing 
time, implementation, and accuracy for Hansen’s RBC 
model. This result is in stark comparison with Caldara et 
al. (2012), for instance; they report that the Euler equa-
tion errors of the method of perturbation are larger than 
those of the Chebyshev projection method in computing 
the stochastic neoclassical growth model with recursive 
preferences. It seems that the “proper” solution method 
in terms of accuracy depends on preferences and model 
parameters such as risk aversion. Second, the Euler equa-
tion errors of the perturbation method increase as the 
value of capital moves far away from its steady-state. In 
fact, the hybrid method of projection with second-order 
perturbation is more accurate than the second-order per-
turbation method over an extreme range of capital. 

Our comparison approach is not new. Indeed, Arouba 
et al. (2006) examined the accuracy of a variety of per-
turbation methods, including log-linearization and sec-
ond-order perturbation, in computing the stochastic neo-
classical growth model with Cobb-Douglas preferences 
as their benchmark test problem; they show that these 
classes of perturbations can accumulate large Euler equa-
tion errors as solution functions move away from the 
steady state. They also demonstrate that the method of 
projection is preferable in terms of accuracy; by const-
ruction, it generates solution functions which fit well 
over a wide range of state space. Caldara et al. (2012) 
compared four solution methods for the stochastic neo-
classical growth model with recursive preferences and 
stochastic volatility: second and third-order perturbation, 
Chebyshev polynomials, and value function iteration. 
They examined four methods in terms of computing time, 
implementation complexity, and accuracy. They concluded 
that perturbations are competitive in terms of accuracy 
along with Chebyshev polynomials and value function 
iteration while being several orders of magnitude faster 
to run. 

The rest of the paper proceeds as follows. Section 2 
presents our test model. Section 3 describes the solution 
methods used to approximate the decision rules of our 
test model. Section 4 reports simulation results and Sec-
tion 5 concludes.  

2.  BASIC RBC MODEL 

We consider Hansen (1985)’s real business cycle 
(RBC) model.  
Hansen’s RBC model is described by:  

(i) one endogenous state variable: { }tK  
(ii) five control variables: { , , , , }t t t t tC N I Y R  
(iii) one exogenous variable: { }tZ  
 
Its equilibrium conditions can be specified as follows:  
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,t tK and C  are capital and consumption, respectively; tI  
represents investment, while ,t tY and N  represent output, 
and labor, respectively; tR  is defined as the gross rate of 
return on capital; lastly, tZ  represents exogenous pro-
ductivity shocks. α  stands for capital income share, while 

δ  means the depreciation rate of capital; γ  represents 
the constant coefficient of relative risk aversion; ρ  re-
presents the persistency of the productivity process; and 

1tε +  follows i.i.d. white noise. The calibration of model 
parameters is summarized as follows. 

 
0.36; 0.025; 5; 0.95; 0.00712εα δ γ ρ σ= = = = = . 

3.  SOLUTION METHODS 

3.1 Log-Linearization 

To find a first-order approximation to the model’s 
equilibrium conditions, we use a suite of Matlab pro-
grams provided by Uhlig (1999). Note that the system of 
log-linearized equations is: 

 
ˆˆ ˆt t tCc I i Y y+ =     (1) 

1
ˆ ˆˆ (1 )t t tKk I i Kkδ+ = + −    (2) 

ˆˆ ˆˆ (1 )t t t ty z k nα α= + −    (3) 

ˆˆ ˆ( )t t t
YRr y k
K

α= −    (4) 

1 1ˆ ˆ ˆ0 t t t tE c c rγ γ+ += − + +⎡ ⎤⎣ ⎦   (5) 

ˆ ˆ ˆ 0t t t tE c y nγ− + − =⎡ ⎤⎣ ⎦           (6) 

1 1ˆ ˆt t tz zρ ε+ += +        (7) 
 
Note that hat and bar represent the percent devia-

tion and the steady-state value respectively.  
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3.2 2nd Order Perturbation  

Schmitt-Grohé and Uribe (2004) employ a pertur-
bation approach to find a second-order approximation to 
equilibrium conditions. Supposing any policy function is 
expressed as ( , ),t ty g x σ=  where σ  is a perturbation 
parameter, we can obtain a second-order approximation 
to the decision rule as follow. 

 
[ ( , )] [ ( , 0)]i ig x g xσ =  

[ ( , 0)] [( )] [ ( , 0)] [ ]i i
x a ag x x x g xσ σ+ − +  

1
[ ( , 0)] [( )] [( )]

2
i

xx ab a bg x x x x x+ − −  

1
[ ( , 0)] [( )] [ ]

2
i

x a ag x x xσ σ+ −  

1
[ ( , 0)] [( )] [ ]

2
i

x a ag x x xσ σ+ −  

1
[ ( , 0)] [ ][ ]

2
ig xσσ σ σ+  

 
Here we are using the notation suggested by Schmitt- 

Grohé and Uribe (2004). For example, [ ]i
yf α  is the ( , )i α  

element of the derivative of f with respect to y. 

3.3 Chebyshev Projection Method 

This section explains how to implement our projec-
tion technique in a step-by-step fashion and highlights 
the critical issues for each step. According to Judd (1992, 
1998), the basic concept of projection technique is to 
find an operator N and a function f such that equilibrium 
is represented by the solution to 1 2( ) 0. :f B BΝ = Ν →  is 
a vector of Euler conditions and 

1:f D R→  is a vector 
of decision rules, where iB  are function spaces and D is 
a vector of state spaces. To make the problem tractable, 
the method of projection focuses on a finite-dimensional 
subdomain of min max{ , }D D  that can be easily represented 
on a computer. It may be difficult for the computer to 
compute N, in which case we find a computable opera-
tor ,Ν  which is “similar” to N. Following Judd (1992), 
we operationalize this idea using the residual function R. 
Therefore, we calculate the solutions to ( ( )) 0R f D= Ν =  
instead (tilde means an approximated solution). Our nu-
merical approach consists of 7 steps. Step 1is a prelimi-
nary procedure for setting up an initial guess. Step 2 cor-
responds to step 1 and step 2 addressed by Judd (1992).1) 
Step 3 and step 4 give shape to the orthogonal colloca-
tion method, simplifying step 3 of Judd (1992). Steps 5 
and 6 are also in accordance with step 4 and step 5 of 

                                                           
1) Judd (1992) describes his procedure for the method of projec-

tion as follows: Step 1. Choose bases and inner products; Step 
2. Choose a degree of approximation, a computable approxi-
mation ,N  and a collection of functions ;f  Step 3. Compute 
the approximation and residual function; Step 4. Compute the 
projections; Step 5. Iterate over step 3 and step 4.  

Judd (1992) respectively. Step 7 suggests ways to extend 
and update each subdomain until it covers the whole domain. 
 
(step 1) Start with an initial guess 
The first step is to define decision rules for the choice 
variables ,t tC N  using the method of log-linearization or 
the method of perturbation. 
 
(step 2) Set up Chebyshev polynomials as bases 
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We have to determine the approximation degree and initial 
range of the subdomains of state and exogenous variables. 
For convenience, we set ,0 min3, ( , )K Z K mazN N D K K= = =  

(0.4 , 1.6 )K K=  and ,0 min( , ) (0.8 , 1.2 ).Z mazD Z Z Z Z= =   

 
(step 3) Evaluate residual functions at collocation 

nodes 
Collocation nodes ( ),l mK Z  are: 
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N π
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Choose Eq. (4), Eq. (5) as residual functions:  
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(step 4) Calculate Chebyshev coefficients 
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, , ,
1 1

( , ) ( , ) 0
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l m C i j i j l m
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C K Z a K Zψ
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( , ) ( , | )l m l m NN K Z N K Z a−

, , ,
1 1

( , ) ( , ) 0
K ZN N

l m N i j i j l m
i j

N K Z a K Zψ
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= − =∑∑  

 
where ( , )l mC K Z  and ( , )l mN K Z  are the initial guesses 

at the collocation nodes ( ), .l mK Z  We can calculate the 

Chebyshev coefficients of C and N using the method of 
OLS. 

 
1( )Ca Cψ ψ ψ−′ ′=  and 1( ) .Na Nψψ ψ−′ ′=  

 
(step 5) Check equilibrium conditions and update 

Chebyshev coefficients 
We use the residual functions defined in step 2 for an 
equilibrium condition check and update the Chebyshev 
coefficients using Newton’s method.  
 
(step 6) Raise approximation orders and iterate 
We set an initial approximation with 3K ZN N= =  and 
then update this up to the case with 13.K ZN N= =  The 
calculation from step 2 to step 5 is performed in each 
iteration.  
 
(step 7) Increase a range of subdomains of exogenous 

variables 
We set the ith subdomain of Z: 

 
, (0.8 , 1.2 ),Z iD Z i Z iδ δ= − +  where 0, , 4, 0.1 .i Zδ= =  

 
After iteration, the whole subdomain of Z becomes ,4ZD  

(0.4 , 1.6 ),Z Z=  as increases. Note that the Chebyshev 

coefficients at the collocation nodes of the ith iteration, 

( )( ) ( )
max min ( )( )

min
(2 1)

cos 1 ,
2 2

i i
ii

l
P

P PlP P
N π

−⎛ ⎞−
⎜ ⎟= − + ⋅ +
⎜ ⎟⋅ ⋅⎝ ⎠

 are used 

for calculating a “new” initial guess for the consecutive 
(i+1)th approximation problem. 

4.  NUMERICAL RESULTS 

4.1 Decision Rules 

Figure 1 and Figure 2 plots the decision rules of the 
household for consumption and labor. In Figure 1, the 
interval for capital is [0.4 , 2.5 ].K K⋅ ⋅  In Figure 2 the 
productivity interval is [0.6 , 1.6 ].Z Z⋅ ⋅  These intervals 
are big enough to encompass all the simulations. Since 
all methods provide nearly indistinguishable answers, 
we observe exactly the same line around the steady-state. 
We can check some differences in labor supply between 
log-linearization and the other methods only when capi-
tal or productivity are far from its steady-state level. 

4.2 Simulations 

To characterize the behavior of the model through 
statistics from simulated paths of the economy, we si-
mulate the model, starting from the deterministic steady 
state, for 150 periods and 100 times iterations, using the 
decision rules. Table 1 reports business cycle statistics. 
We see that nearly all values are the same, a simple con-
sequence of the similarity of the decision rules 

4.3 Euler Equation Errors 

It is also important to evaluate the accuracy of each 
of the procedures. Euler equation errors, introduced by 
Judd (1992), have become a common tool for determin-
ing the quality of solution methods. Figure 3 plots the 
Euler equation errors of each solution method. It deser-
ves several comments. First, the second-order perturba-

 

 
Figure 1. Policy Functions: Consumption and Labor Rates Against Capital (Assuming Productivity at Steady State) 
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tion method displays a better level of accuracy as com-
pared to other methods. This result is in stark compari-
son with Caldara et al. (2012); they report that the Euler 
equation errors of the method of perturbation are larger 
than those of the Chebyshev projection method in com-

puting the stochastic neoclassical growth model with 
recursive preferences. It seems that the “proper” solution 
method in terms of accuracy depends on preferences and 
model parameters such as risk aversion. Second, the pro-
jection method which used second-order perturbation 

 
Figure 2. Policy Functions: Consumption and Laborrates Against Productivity (Assuming Capital at Steady State) 
 

Table 1. Business cycle statistics 

 k c n y i r 
 Mean      

Log-linear 12.9716 0.9233 0.3282 1.2505 0.3272 1.0097 
2nd order perturbation 12.9806 0.9233 0.3282 1.2508 0.3275 1.0097 
Projection with log-linear 12.9916 0.9239 0.3285 1.2518 0.3279 1.0097 
Projection with 2nd order perturbation 12.9948 0.9234 0.3283 1.2514 0.328 1.0097 

 Variance      
Log-linear 0.0018 0.0012 0.0039 0.0095 0.0338 0.0003 
2nd order perturbation 0.0018 0.0012 0.0039 0.0094 0.0337 0.0003 
Projection with log-linear 0.0019 0.0012 0.0045 0.0099 0.0355 0.0004 
Projection with 2nd order perturbation 0.0019 0.0012 0.0045 0.0098 0.0354 0.0004 

 

 
Figure 3. Hansen Model: Consumption and Labor Rates Against Productivity (Assuming Capital at Steady State) 
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for calculating an initial guess is more accurate than the 
projection one which used log-linearization. 

Third, the Euler equation errors of the perturbation 
method increase as the value of capital moves far away 
from steady-state. In fact, Figure 3 shows that the hybrid 
method of projection with second-order perturbation is 
more accurate than the second-order perturbation method 
over an extreme range of capital. 

4.4 Computing Times  

We briefly summarize computing time on Table 2. 
Log-linearization method and perturbation method take 
only 0.3 and 1.1 seconds respectively. Calculation time 
for Cheyshev projection methods depends on approxi-
mation order ( , ).K ZN N  

 
Table 2. Computing Times 

Solution Methods Elapsed Time
Log-linearization 0.27 seconds
2nd order perturbation 1.08 seconds
Projection with Log-linearization (7 order) 17.13 seconds
Projection with 2nd order perturbation  
(7 order) 

14.41 seconds

Projection with Log-linearization  
(10 order) 

17.13 seconds

Projection with 2nd order perturbation  
(10 order) 

63.71 seconds

Projection with Log-linearization  
(13 order) 

225.96 seconds

Projection with 2nd order perturbation  
(13 order) 

171.46 seconds

5.  CONCLUSIONS 

The purpose of this paper is to provide comparison 
results of different solution methods for the standard RBC 
model (Hansen, 1985). Four approaches are taken into 
account: log-linearization, second-order perturbation, and 
a type of the hybrid methods which use as an initial guess 
first-order and second-order approximations, respectively. 
Two main results merit a mention. First, the perturbation 
method delivers a high level of accuracy and is a most 
reliable tool for the standard RBC model. Second, the 
hybrid method of projection with second-order perturba-

tion is more accurate than the second-order perturbation 
method over an extreme range of capital. 
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