DOI QR코드

DOI QR Code

Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying

기계적합금화에 의한 Fe2O3-Mg계 연자성 콤포지트의 합성 및 평가

  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과)
  • Received : 2015.10.28
  • Accepted : 2015.11.20
  • Published : 2015.12.31

Abstract

We have applied mechanical alloying (MA) to produce soft magnetic composite material using a mixture of elemental $Fe_2O_3$-Mg powders. An optimal milling and heat treatment conditions to obtain soft magnetic ${\alpha}$-Fe/MgO composite with fine microstructure were investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that ${\alpha}$-Fe/MgO composite powders in which MgO is dispersed in ${\alpha}$-Fe matrix are obtained by MA of $Fe_2O_3$ with Mg for 30 min. The saturation magnetization of ball-milled powders increases with increasing milling time and reaches to a maximum value of 69.5 emu/g after 5 h MA. The magnetic hardening due to the reduction of the ${\alpha}$-Fe grain size by MA was also observed. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine at $800{\sim}1000^{\circ}C$ under 60 MPa. X-ray diffraction result shows that the average grain size of ${\alpha}$-Fe in ${\alpha}$-Fe/MgO nanocomposite sintered at $800^{\circ}C$ is in the range of 110 nm.

본 연구에서는 $Fe_2O_3$-Mg계 혼합분말을 사용하여 연자성 복합재료를 제조하기 위하여 기계적 합금화법(MA)을 적용하였다. 초미세 조직을 가진 연자성 ${\alpha}$-Fe/MgO 복합재료를 얻기 위하여 X선 회절, 열분석 및 자기특성 측정을 통하여 최적 볼밀조건 및 열처리 조건을 조사하였다. $Fe_2O_3$와 순금속 Mg의 혼합분말을 30분 동안 MA 처리한 결과. ${\alpha}$-Fe 기지에 MgO가 분산된 ${\alpha}$-Fe/MgO 복합분말을 얻을 수 있었다. MA 분말시료의 자화값은 볼밀처리 시간에 따라 증가하여 MA 5시간 시료에서 69.5 emu/g의 최대값이 관찰되었다. 또한 MA 처리에 의하여 ${\alpha}$-Fe의 결정립 미세화와 함께 보자력이 증가하는 자기경화 현상이 관찰되었다. MA 분말시료의 벌크화를 위하여 소결온도 $800{\sim}1000^{\circ}C$, 압력 60 MPa에서 SPS 소결을 실시하였다. X선 회절 결과로부터, 5시간 MA 처리한 분말을 $800^{\circ}C$에서 SPS 소결시킨 ${\alpha}$-Fe/MgO 연자성 복합재료의 경우 ${\alpha}$-Fe상 평균 결정립 크기가 110 nm임을 알 수 있었다.

Keywords

References

  1. C.C. Koch, O.B. Cavin, C.G. Mckamey and J.O. Scarbrough, "Preparation of amorphous $Ni_{60}Nb_{40}$ by mechanical alloying", Appl. Phys. Lett. 43 (1983) 1017. https://doi.org/10.1063/1.94213
  2. H.J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333. https://doi.org/10.1007/BF02646980
  3. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals 166 (1990) 293. https://doi.org/10.1016/0022-5088(90)90011-8
  4. U. Mizutani and C.H. Lee, "Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders", J. Mater. Sci. 25 (1990) 399. https://doi.org/10.1007/BF00714046
  5. C.H. Lee, "Formation of nanocrystalline $MoSi_2$ compound subjected to mechanical alloying", J. Ceram. Proc. Res. 9 (2008) 321.
  6. L.F. Mattheiss, "Calculated structural properties of $CrSi_2$, $MoSi_2$, and $WSi_2$", Phys. Rev. B: Condens. Matter 45 (1992) 3252. https://doi.org/10.1103/PhysRevB.45.3252
  7. I.K. Kim, "Synthesis of thermoelectric $Mg_3Sb_2$ by melting and mechanical alloying", Journal of Korean Association of Crystal Growth 22 (2012) 207.
  8. C.H. Lee, "Fabrication and characterization of Mn-Si thermoelectric materials by mechanical alloying", Journal of Korean Association of Crystal Growth 21 (2011) 246.
  9. T. Fukunaga, N. Kuroda, C.H. Lee, T. Koyano and U. Mizutani, "Nitrogen induced amorphization observed by X-ray and neutron diffractions in the immiscible V-Cu system", J. Non-Cryst. Solids 176 (1994) 98. https://doi.org/10.1016/0022-3093(94)90217-8
  10. H.J. Fecht, E. Hellstern, Z. Fu and W.L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333. https://doi.org/10.1007/BF02646980
  11. K. Suzuki, Y. Homma, K. Suzuki and M. Misawa, "Structural characterization of Ni-V amorphous alloys prepared by mechanical alloying", Mater. Sci. Eng. A134 (1991) 987.
  12. R.B. Schwarz and W.L. Johnson, "Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals", Phys. Rev. Lett. 51 (1983) 415. https://doi.org/10.1103/PhysRevLett.51.415
  13. T. Ban, K. Okada, T. Hayashi and N. Otsuka, "Mechanochemical effects for some $Al_2O_3$ powders of dry grinding", J. Mat. Sci. 27 (1992) 465.
  14. K. Tokumitsu, "Mechanochemical reaction between metals and hydrocarbons", Mat. Sci. Forum, 88-90 (1992) 715. https://doi.org/10.4028/www.scientific.net/MSF.88-90.715
  15. H. Izumi, K. Izumi and K. Kudaka, ""Mechanochemical reduction reaction of titanium oxides by calcium", J. Jpn. Soc. Powder and Powder Metallurgy 48 (2001) 1051. https://doi.org/10.2497/jjspm.48.1051
  16. C.H. Lee, S.H. Lee, S.Y. Chun, S.J. Lee and Y.S. Kwon, "Nanocomposite formation in the $Fe_2O_3-M$ (M = Al, Ti, Zn, Cu) system by mechanical alloying", Mat. Sci. Forum 449-452 (2004) 253. https://doi.org/10.4028/www.scientific.net/MSF.449-452.253
  17. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, Pergamon International Library 268 (1983).
  18. W.H. Hall, "Characterization of crystal size and strain by X-ray diffraction", J. Inst. Met. 75 (1948) 1127.
  19. K. Schnitzke, L. Schultz, J. Wecker and M. Katter, "High coercivity in $Sm_2Fe_{17}N_x$ magnets", Appl. Phys. Lett. 57 (1990) 2853. https://doi.org/10.1063/1.104202

Cited by

  1. Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet vol.23, pp.2, 2016, https://doi.org/10.6117/kmeps.2016.23.2.011