DOI QR코드

DOI QR Code

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite

바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가

  • Jeong, Bora (Green Manufacturing 3Rs R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Lee, Heesoo (School of Materials Science & Engineering, Pusan National University) ;
  • Kim, Eok-Soo (Green Manufacturing 3Rs R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology) ;
  • Kim, HongDae (Green Manufacturing 3Rs R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology)
  • 정보라 (한국생산기술연구원 울산지역본부 친환경생산3R그룹) ;
  • 이희수 (부산대학교 재료공학부) ;
  • 김억수 (한국생산기술연구원 울산지역본부 친환경생산3R그룹) ;
  • 김홍대 (한국생산기술연구원 울산지역본부 친환경생산3R그룹)
  • Received : 2015.10.13
  • Accepted : 2015.11.13
  • Published : 2015.12.31

Abstract

Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

질소산화물 ($NO_X$)은 고정원(화력발전소, 산업시설) 및 이동원(자동차, 선박) 등에서 배출되어지며, 발암물질 및 광화학 스모그의 주범으로 작용하고 있다. 선택적 촉매 환원법(SCR)은 $NO_X$를 제거하는 가장 효율적인 방법이며, 상업용으로 사용되어지는 $V_2O_5-WO_3/TiO_2$계 촉매에서 $V_2O_5$ 함량은 0.5~3 wt%, $WO_3$ 함량은 5~10 wt%이다. 촉매 성분 중 $V_2O_5$의 경우 $NO_X$ 환원 반응을 통해 촉매 작용을 촉진시키지만, 과량으로 첨가될 경우, $SO_2$에서 $SO_3$로의 산화 반응을 증가시킨다. 본 연구에서는 높은 탈질 효율을 유지시킴과 더불어, 바나듐의 함량을 줄이기 위하여, 그래핀을 바나듐 담지 matrix로 사용하여 나노복합체를 합성하였으며, 합성된 나노복합체를 첨가하여 Honeycomb형 1 inch SCR 촉매를 제조하였다. 제조된 SCR 촉매는 XRD(X-ray Diffraction), XRF(X-ray Fluorescence Spectrometer), BET(Brunauer, Emmett & Teller) 등의 분석을 통해 물성 평가를 진행하였으며, Micro Reactor(MR)를 이용하여 활성평가를 진행하였다. 그 결과, 촉매 상용 운전 온도인 $350^{\circ}C$에서 나노복합체가 첨가된 SCR 촉매의 탈질 효율은 77.1 %로 상용촉매의 탈질 효율인 77.8 %와 유사한 효율을 나타내는 것을 확인하였다.

Keywords

References

  1. G. Centi, S. Perathoner and F. Vazznana, "Oscillating behavior in $N_2O$ decomposition over Rh supported on zirconia-based catalysts: The role of the reaction conditions", J. Catal. 192 (2000) 224. https://doi.org/10.1006/jcat.2000.2847
  2. C.M. Schar, C.H. Onder and H.P. Geering, "Control of a urea SCR catalytic converter system for a mobile heavy duty diesel engine", SAE SP-1754 (2003) 295.
  3. S.S. Park, "Thermal behavior of $TiO_2$-based honeycomb type SCR catalyst and the Influence of cell density on the reaction efficiency", Gyeongsang National University (2010).
  4. J.H. Choi, M.H. Kim and I.S. Nam, "Heating element of an air preheater in a utility boiler as an SCR reactor removing NO by $NH_3$" Ind. Eng. Chem. Res. 44 (2005) 707. https://doi.org/10.1021/ie0492653
  5. V.I. Parvulescu, P. Grange and B. Delmon, "Cataytic removal of NO", Catal. Today 46 (1998) 223. https://doi.org/10.1016/S0920-5861(98)00396-4
  6. S. Broer and T. Hammer, "Selective catalytic reduction of nitrogen oxide by combining a non-thermal plasma and a $V_2O_5-WO_3/TiO_2$ catalysts", Appl. Catal. B: Environ 28 (2000) 101. https://doi.org/10.1016/S0926-3373(00)00166-1
  7. M. Kobayashi and K. Miyoshi, "$WO_3-TiO_2$ monolithic catalysts for high temperature SCR of NO by $NH_3$: Influence of preparation method on structural and physico chemical properties, activity and durability", Appl. Catal. B: Environ. 72 (2007) 253. https://doi.org/10.1016/j.apcatb.2006.11.007
  8. A.K.Geim, "Graphene: Status and prospects", Science 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  9. C. Zhang, W. Lv, Q. Yang and Y. Liu, "Grphene supported nano particle of Pt-Ni for CO oxidation", ASS 258 (2012) 7795.
  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, "Electric field effect in atomically thin carbon films", Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  11. C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, "Dispersion of tungsten oxide on SCR performance of $V_2O_5-WO_3/TiO_2$ : Acidity, surface species and catalystic activity", J. Chem. Engie. 225 (2013) 520. https://doi.org/10.1016/j.cej.2013.04.005
  12. B.J. Jang, "The research of reaction characteristic and the improvement of efficiency of $TiO_2$ Catalyst for SCR in high temperature", Kyinggi University (2008).
  13. G. Cristallo, E. Roncari, A. Rinaldo and F. Trifiro, "Study of anatase-rutile transition phase in monolithic catalyst $V_2O_5/TiO_2$ and $V_2O_5-WO_3/TiO_2$", Appl. Catal. A 209 (2009) 249.
  14. S.M. Park, "Selective catalytic reduction of nitrogen oxides promoted by storage function", Chonnam National University (2010).
  15. G. Deo, A.M. Turek, I.E. Wachs, T. Machej, J. Haber, N. Das, H. Eckert and A.M. Hirt, "Physical and chemical characterization of surface vanadium oxide sup-ported on titania: influence of the titania phase (anntase, rutile, brookite and B)", Appl. Catal. A 91 (1992) 27. https://doi.org/10.1016/0926-860X(92)85176-C
  16. S.H. Yoon, J.H. Kim, B.K. Shin, S.S. Park, D.W. Shin and H.S. Lee, "Effects of anatase-rutile phase transition and grain growth with $WO_3$ on thermal stability for $TiO_2$ SCR catalyst", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 181. https://doi.org/10.6111/JKCGCT.2011.21.4.181
  17. B.Y. Kim, B.K. Shin, H.S Lee and H.H. Chun, "Physico- chemical effects of cerium oxide on catalytic activity of $CeO_2-TiO_2$ prepared by sol-gel method for $NH_3-SCR$", Korean Cryst. Growth Cryst. Technol. 23 (2013) 320. https://doi.org/10.6111/JKCGCT.2013.23.6.320