DOI QR코드

DOI QR Code

The properties of AR(Alkali Resistant)-glass fiber by zirconia contents

지르코니아 함량에 따른 내알칼리 유리섬유의 특성

  • Lee, Ji-Sun (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Hwang, Jonghee (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology, Optic & Display Material Team) ;
  • Hyun, Soong-Keun (Department of Materials Science and Engineering, Inha University)
  • 이지선 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 김진호 (한국세라믹기술원 광.디스플레이소재팀) ;
  • 현승균 (인하대학교 금속공학과)
  • Received : 2015.10.02
  • Accepted : 2015.11.06
  • Published : 2015.12.31

Abstract

Commercial AR(Alkali Resistant)-glass fiber has a good chemical resistant property, but also has a problem of difficulty in fiberizing process because of high viscosity in melted glass compare with E-glass fiber which is the most widely used for reinforced fiber of composite materials. In this study, we fabricated AR-glass fiber with low zirconia contents compare with commercial AR-glass fiber relatively, and measured properties against E-glass fiber. We obtained transparent clear glass with zirconia contents of 0.5~16 wt% by melting at $1600^{\circ}C$ for 2 hours. These AR-glass samples had high visible transmittance of 89~90 %, softening temperature of $703{\sim}887^{\circ}C$. And softening temperatures of them were increased according to the increasing zirconia contents. Compare with E-glass, AR-glass contains 4 wt% zirconia has different value of $-94^{\circ}C$ in softening temperature, $+68^{\circ}C$ at Log3 temperature and $-13^{\circ}C$ at Log5 temperature in viscosity. We could verify good alkali resistant property of the AR-glass fiber with SEM after dipping in alkali solution for 48~72 hours, and also high tensile strength, 1.7 times compare with E-glass fiber at 48 hours and 2.2 times at 72 hours. We conclude that this AR-glass fiber can be widely used as general alkali resistant glass fiber because of easy manufacturing condition and good properties even though it has low zirconia contents.

기존의 내알칼리 유리섬유는 복합재료의 보강섬유로 가장 널리 사용되고 있는 일반적인 E-glass fiber보다 우수한 내화학 특성을 갖고 있으나 용융유리의 점도가 너무 높아 섬유화가 어려운 문제점을 가지고 있다. 본 연구에서는 지르코니아 함량이 상용 제품에 비해 낮은 범위에서 지르코니아 함량별로 내알칼리유리섬유를 제조하고 이들의 특성을 E-glass 섬유와 비교하였다. 지르코니아의 함량을 0.5~16 wt%까지 변화시키면서 제조한 각각의 배치원료를 $1600^{\circ}C$에서 2시간 용융하여 투명하고 맑은 유리를 얻을 수 있었다. 이들 유리는 약 90 %의 높은 가시광 투과율을 나타내었고, 열적특성에서 $703{\sim}887^{\circ}C$의 연화점을 나타내었으며, 지르코니아의 함량이 증가함에 따라 연화점이 상승하는 경향을 나타내었다. 지르코니아 함량이 4 wt%인 조성을 E-glass 조성과 비교한 결과, 연화점에서는 $-94^{\circ}C$의 차이를, 고온점도에 있어서는 log3 온도가 $+68^{\circ}C$, log5 온도가 $-13^{\circ}C$의 차이를 나타내었다. 내알칼리 유리섬유를 알칼리용액에 48시간 및 72시간 침적 후 SEM을 통해 섬유의 내침식성이 양호함을 확인할 수 있었고, 인장강도도 일반 E-glass 섬유에 비해 48시간에서 1.7배와 72시간에서 2.2배의 높은 값을 나타냄을 알 수 있었다. 결론적으로 이러한 내알칼리 유리섬유는 쉬운 제조조건과 낮은 지르코니아 함량에도 불구하고 좋은 특성 때문에 일반적인 내알칼리 유리섬유로서 널리 사용될 수 있을 것으로 판단되었다.

Keywords

References

  1. K.L.Loewenstein, "Manufacturing technology of continous glass fibers", 3rd ed. (Elsevier Science Publishers, 1993) p.31.
  2. A.J. Majumdar and J.F. Ryder, "Glass Technol", 9 (1968) 78.
  3. A. Paul, "Chemical durability of glasses: a thermodynamic approach", J. Mater. Sci. 12 (1977) 2246. https://doi.org/10.1007/BF00552247
  4. M.B. Volf, "Chemical Approach to Glass" (Elsevier Science, Amsterdam, 1984) p.306.
  5. H.J. Jung, "Fusion Ceramic Materials (Text book for High School)" (Ministery of Education Science and Technology, Korea, 2003) p.60.
  6. F.T. Wallenberger, "Advanced Inorganic Fibers" (Kluwer Academic Publishers, London, 1999) p.147.
  7. F.T. Wallenberger, "Glass Fibers", ASM Handbook 21 (2001) 28.
  8. F.T. Wallenberger, "Advanced Inorganic Fibers" (Kluwer Academic Publishers, London, 1999) p.146.
  9. B.H. Kim, "Glass Technology" (Chungmoon Gak, Korea, 2009) p.430.
  10. T.Y. Lim, S.S. Jeong, J.H. Hwang and J.H. Kim, "A study on the fabrication of soda-lime glass by using refused coal ore and its properties", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 43. https://doi.org/10.6111/JKCGCT.2010.20.1.043
  11. F.T. Wallenberger, "Advanced Inorganic Fibers" (Kluwer Academic Publishers, London, 1999) p.137.
  12. H.J. Jung, "Fusion Ceramic Materials (Text book for High School)" (Ministery of Education Science and Technology, Korea, 2003) p.193.
  13. T. Suzuki, "Data book of glass composition" (The Glass Manufacturer's association in Japan, 1991) p. 134.
  14. F.T. Tooley, "The Handbook of Glass Manufacture Vol. 1&2", Books For Industry, INC., 1-18,893-956 (1974).
  15. H. Rawson, "Properties and Applications of Glass; Glass science and Technology 3" (Elsevier, 1980) p.32-60.
  16. F.T. Wallenberger, "Advanced Inorganic Fibers" (Kluwer Academic Publishers, London, 1999) p.132.
  17. K.L. Loewenstein, "Manufacturing Technology of Continuous Glass Fibers" (Elsevier Science, 1993) p.32.
  18. B.H. Kim, "Glass Technology" (Chungmoon Gak, Korea, 2009) p.380.
  19. M.B. Volf, "Chemical Approach to Glass" (Elsevier Science, Amsterdam, 1984) p.311.
  20. F.T. Wallenberger, "Advanced Inorganic Fibers" (Kluwer Academic Publishers, London, 1999) p.148.