References
- J. Bezdek, Pattern Recognition with fuzzy Objective Function Algorithms, New York, Springer, January 1981.
- Sadaaki Muyamoto, Fuzzy Clustering - Basic Ideas and Overview, Handbook of Computational Intelligence, Springer, pp. 293-248, May 2015.
- Janmenjoy Nayak, Fuzzy C-means(FCM) Clustering Algorithm: A Decade Review from 2000 to 2014, Systems and Technologies, Vol. 32, No. 2, pp. 133-179, December 2014.
- Zarita Zainuddin, An effective Fuzzy C-Means algorithm based on symmetry similarity approach, Applied Soft Computing, Vol. 35, No. 10, pp. 433-448, October 2015. https://doi.org/10.1016/j.asoc.2015.06.021
- Basel Abu-Jamous, Fuzzy Clustering, Integrative Cluster Analysis in Bioinformatics, Chapter 13, April 2015.
- G. Heo, An Extension of Possibilistic Fuzzy C-Means using Regularization, Journal of the Korean Society of Computer Information, Vol. 15, No. 1, pp. 43-50, January 2010. https://doi.org/10.9708/jksci.2010.15.1.043
- R. N. Dave, Characterization and detection of noise in clustering, Pattern Recognition Letters, Vol. 12, No. 11, pp. 657-664, November 1991. https://doi.org/10.1016/0167-8655(91)90002-4
- R. Babuska, P. J. van der Veen and U Kaymak, Improved Covariance Estimation for Gustafson-Kessel Clustering, Proceeding of the 2002 IEEE International Conference on Fuzzy Systems, pp. 1081-1085, May 2002.
- G. Heo, Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm, Proceedings of KFIS Autumn Conference, Vol. 17, No. 2, November 2007.
- I. Gath and A. B. Geva, Unsupervised Optimal Fuzzy Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 773-791, July 1989. https://doi.org/10.1109/34.192473
Cited by
- 레귤러라이제이션 기반 개선된 밀도 무관 퍼지 클러스터링 vol.24, pp.1, 2015, https://doi.org/10.6109/jkiice.2020.24.1.1