DOI QR코드

DOI QR Code

SHM by DOFS in civil engineering: a review

  • Rodriguez, Gerardo (UPC, Department of Construction Engineering, Technical University of Catalonia- BARCELONATECH) ;
  • Casas, Joan R. (UPC, Department of Construction Engineering, Technical University of Catalonia- BARCELONATECH) ;
  • Villalba, Sergi (UPC, Department of Construction Engineering, Technical University of Catalonia- BARCELONATECH)
  • Received : 2015.04.14
  • Accepted : 2015.07.30
  • Published : 2015.12.25

Abstract

This paper provides an overview of the use of different Distributed Optical Fiber Sensor systems (DOFSs) to perform Structural Health Monitoring (SHM) in the specific case of civil engineering structures. Nowadays, there are several methods available for extracting distributed measurements from optical fiber, and their use have to be according with the aims of the SHM performance. The continuous-in-space data is the common advantage of the different DOFSs over other conventional health monitoring systems and, depending on the particular characteristics of each DOFS, a global and/or local health structural evaluation is possible with different accuracy. Firstly, the fundamentals of different DOFSs and their principal advantages and disadvantages are presented. Then, laboratory and field tests using different DOFSs systems to measure strain in structural elements and civil structures are presented and discussed. Finally, based on the current applications, conclusions and future trends of DOFSs in SHM in civil structures are proposed.

Keywords

References

  1. Ansari, F. and Libo, Y. (1998), "Mechanics of bond and interface shear transfer in optical fiber sensors", J. Eng. Mech. - ASCE, 124(4), 385-394. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(385)
  2. Bao, T.F., Wang, J.L. and Yao, Y. (2010), "A fiber optic sensor for detecting and monitoring cracks in concrete structures", Science China. Technol. Sci., 53(11), 3045-3050. https://doi.org/10.1007/s11431-010-4111-4
  3. Bao, X. and Chen, L. (2012), "Recent progress in distributed fiber optic sensors", Sensors 12, 8601-8639. https://doi.org/10.3390/s120708601
  4. Barnoski, M.K. and Jensen, S.M. (1976), "Fiber waveguides: A novel technique for investigating attenuation characteristics", Appl. Opt., 15(2), 2112-2115. https://doi.org/10.1364/AO.15.002112
  5. Bastianini, F., Corradi, M., Borri, A. and di Tomasso, A. (2005a), "Retrofit and monitoring of an historical building using "Smart" CFRP with embedded fibre optic Brillouin sensors", Constr. Build. Mater., 19, 525-535. https://doi.org/10.1016/j.conbuildmat.2005.01.004
  6. Bastianini, F., Matta, F., Galati, N. and Nanni A. (2005b), "A Brillouin smart FRP material and strain data post processing software for structural health monitoring through laboratory testing and field application on a highway bridge", Proc. SPIE, 5765, 600-611. https://doi.org/10.1117/12.594758
  7. Bastiniani, F., Rizzo, A., Galati, N., Deza, U. and Nanni A. (2005c), "Discontinuous Brillouin strain monitoring of small concrete bridges: comparison between near-to.-surface and smart FRP fiber installation techniques", Proc. SPIE, 5765, 612-623. https://doi.org/10.1117/12.594760
  8. Bernini, R., Minardo, A., Ciaramella, S., Minutolo, V. and Zeni, L. (2011), "Distributed strain measurement along a concrete beam via stimulated brillouin scattering in optical fibers", Int. J. Geophys., Article ID 710941:1-5.
  9. Billon, A., Henault, J.M., Quiertant, M., Taillade, F., Khadour, A., Martin, R.P. and Benzarti, K. (2014), "Quantitative strain measurements with Distributed Fiber Optic Systems: Qualification of sensing cable bonded to the surface of a concrete structure", Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, July.
  10. Boyd, RW. (1992), Nonlinear Optics, Academic Press, USA.
  11. Caminero, M.A., Lopez-Pedroza, M., Pinna, C. and Soutis, C. (2013), "Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation", Composites B, 53, 76-91. https://doi.org/10.1016/j.compositesb.2013.04.050
  12. Casas, J.R., Villalba, S. and Villalba, V. (2014), Management and safety of existing concrete structures via optical fiber distributed sensing Chapter of the book, Maintenance and Safety of Aging Infrastructure, (Eds., D.M. Frangopol and Y.Tsompanakis), CRC Press. Taylor and Francis
  13. Casas, J.R. and Cruz, J.S. (2003), "Fiber optic sensors for bridge monitoring", J. Bridge Eng. - ASCE, 8(6), 362-373. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362)
  14. Culshaw, B. (2011), "Fiber optic sensors in smart structures: Achievements, challenges and prospects", Proc. of SPIE, 7982, 798202-1 798202-9.
  15. Delepine-Lesoille, S., Merliot, E. and Gautier, Y. (2008), "Optical fiber strain sensors for use in civil engineering: State-of-the-art, industrialapplications and outlook", BLPC no. 272,123-140.
  16. Duck, G. and LeBlanc, M. (2000), "Arbitrary strain transfer from a host to an embedded fiber-optic sensor", Smart Mater. Struct., 9, 492-497. https://doi.org/10.1088/0964-1726/9/4/312
  17. Enckell, M., Glisic, B., Myrvoll, F. and Bergstrand, B. (2011), "Evaluation of large-scale bridge strain, temperature and crack monitoring with distributed fibre optic sensors", J. Civil Struct. Health Monit., 1(1), 37-46. https://doi.org/10.1007/s13349-011-0004-x
  18. Fang, Z., Chin, K., Qu, R. and Cai, H. (2012), Fundamentals of Optical Fiber Sensors,Wiley.
  19. Feng, X., Zhou, J., Sun, C.H., Zhang, X. and Ansari, F. (2013), "Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors", J. Eng. Mech. - ASCE, 139(12), 1797-1807. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000622
  20. Froggatt, M. and Moore, J. (1998a), "Distributed measurement of static strain in an optical fiber with multiple Bragg gratings at nominally equal wavelengths", Appl. Optics., 37(10), 1741-1746. https://doi.org/10.1364/AO.37.001741
  21. Froggatt, M., and Moore, J. (1998b), "High resolution strain measurement in optical fiber with Rayleigh scatter", Appl. Optics., 37(10), 1735-1740. https://doi.org/10.1364/AO.37.001735
  22. Galindez-Jamioy, C.A. and Lopez-Higuera, J.M. (2012), "Brillouin distributed sensors: An overwiew and applications", J. Sensors, Hindawi Publishing Corporations.Article ID 204101, 17 pages.
  23. Gao, J., Shi, B., Zhang, W. and Zhu, H. (2006), "Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor", Measurement, 39, 420-428. https://doi.org/10.1016/j.measurement.2005.12.002
  24. Gifford, D.K., Kreger, S.T., Sang, A.K., Froggatt, M., Duncan, R.G., Wolfe, S. and Soller, B. (2007), "Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications", Proc of SPIE, 6770, 1-10.
  25. Glisic, B. and Inaudi, D. (2007), Fibre optic methods for structural health monitoring, John Wyler & Sons, Chichester, UK.
  26. Glisic, B. and Inaudi, D. (2012), "Development of method for in-service crack detection based on distributed fiber optic sensors", Struct.Heatlh Monit., 11(2), 161-171. https://doi.org/10.1177/1475921711414233
  27. Glisic, B., Chen, J. and Hubbell, D. (2011), "Streicker bridge: A comparation between Bragg-gratting long-gauge strain and temperature sensors and Brillouin scattering-based distributed strain and temperature sensors", Proc. of SPIE , 7981, 1-10.
  28. Glisic, B., Hubbell, D., Hoeg, S.D. and Yao, Y. (2013), "Damage detection and characterization using long-gauge and distributed fiber optic sensors", Opt. Eng., 52(8), 1-12.
  29. Glisic, B. and Inaudi, D. (2011), "Development of method for in-service crack detection based on distributed fiber optic sensors", Struct. Health Monit., 11(2) 161-171.
  30. GN Nettest. Understanding OTDRs. (2000), Part#33881. Rev. A. February.
  31. Gomez, R., Muria, D., Mendoza, M.A., Mendez, A., Chandler, K., Sanchez, R.A., Escobar, J.A. and Csipkes, A. (2009), "Novel structural monitoring system for the Chiapas Bridge", Proceedings of the SHMII-4, Zurich Switzerland, July.
  32. Henault, J.M., Salin, J., Moreau, G., Quiertant, M., Taillade, F., Benzarti, K. and Delepine-Lesoille, S. (2012), "Analysis of the strain transfer mechanism between a truly distributed optical fiber sensor and surrounding medium", Concrete Repair, Rehabilitation and Retrofitting III, 733-739.
  33. Her, S.C.H. and Huang, C.H.Y. (2011), "Effect of coating on the strain transfer of optical fiber sensors", Sensors, 11, 6926-6941. https://doi.org/10.3390/s110706926
  34. Hetch, J. (2006), Understanding Fiber Optics, Prentice Hall, Fifth Edition.USA.
  35. Hoult, N.A., Ekim, O. and Regier, R. (2014), "Damage/deterioration for steel structures using distributed fiber optic stress sensors", J. Eng. Mech. - ASCE, October, 1-9.
  36. Hoepffner, R. (2008), Distributed fiber optic strain sensing in hydraulic concrete and earth structures. measuring theory and field investigations on dams and landslides, Ph.D. Dissertation, Technische Univeritat Munchen, Munchen.
  37. Horiguchi, T., Kurashima, T. and Tateda, M. (1989), "Tensile strain dependence of Brillouin frequency shift in Silica optical fibers", IEEE Photonics Technol. Lett., 1(5), 107-108. https://doi.org/10.1109/68.34756
  38. Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M. and Koyamada, Y. (1995), "Development of a distributed sensing technique using Brillouin scattering", J. Lightwave Technol., 13(7), 1296-1302. https://doi.org/10.1109/50.400684
  39. Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M. and Koyamada, Y. (1983), "Brillouin optical time-domain reflectometry", IEICE Trans. Commun, E67-B, 4, 382-390.
  40. Hotate, K. and Ong, S.S.L. (2002), "Distributed fiber Brillouin strain sensing by correlation-based, continuous wave technique, cm order spatial resolution and dynamic strain measurement", Proc. of SPIE, Photonics Asia, 299-310.
  41. Housner, G.W., Berman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O. and Masri, S.F. (1997), "Structural Control: past, present and future", J. Eng. Mech.- ASCE, 123 (9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  42. Imai, M. and Feng, M. (2012), "Sensing optical fiber installation study for crack identification using a stimulated Brillouin-based stra in sensor", Struct. Health Monit., 11(5), 501-509. https://doi.org/10.1177/1475921712442440
  43. Imai, M. and Suzuki, H. (2011), "Highly dense strain measurement of concrete retrofitted with smart fabric", Proc. of SPIE, 7983,1-15.
  44. Imai, M., Nakano, R., Kono, T., Ichinomiya, T., Miura, S. and Mure, M. (2010), "Crack detection application for fiber reinforced concrete using BOCDA-based optical fiber strain sensor", J. Struct. Eng. - ASCE, 136(8), 1001-1008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000195
  45. Inaudi, D. and Glisic, B. (2005), "Application of distributed Fiber Optic Sensory for SHM", Proceedings of the 2nd SHMII Conference,Shenzhen, China, November.
  46. Iten, M. (2011), "Novel applications of distributed fiber-optic sensing in geothecnical engineering", Proceedings of the ETH, Zurich, Switzerland.
  47. Klar, A., Goldfeld, Y. and Charas, Z. (2010), "Measures for identifying cracks within reinforced concrete beams using BOTDR", Proc. of SPIE , 7647, 1-9.
  48. Krebber, K., Lenke, P., Liehr, S., Schukar, M., Wendt, M. and Witt, J. (2010), "Distributed POF sensors: recent progress and new challenges", Invited Paper, International Conference of Plastic Optical Fiber (ICPOF), Yokohama, Japan.
  49. Kurashima, T., Horiguchi, T. and Tateda, M. (1990), "Thermal effects on Brillouin frequency shift in jacketed optical silica fibers", Appl. Optics, 29(15), 2219-2222. https://doi.org/10.1364/AO.29.002219
  50. Kurashima, T., Tateda, M., Horiguchi, T. and Koyamada, Y. (1997), "Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization satate", IEEE Photonics Technol. Lett., 9(3), 360-362. https://doi.org/10.1109/68.556073
  51. Lally, E.M., Reaves, M., Horell, E., Klute, S. and Frogatt, M. (2012), "Fiber optic shape sensing for monitoring of flexible structures", Proc of SPIE , 8345, 1-10.
  52. Lan, C.H., Zhou, Z. and Ou, J. (2014), "Monitoring of structural prestress loss in RC beams by inner distributed Brillouin and fiber Bragg grating sensors on a single optical fiber", Struct. Control Health Monit., 21(3), 317-330. https://doi.org/10.1002/stc.1563
  53. Leung, C.K.Y., Elvin N., Olson N., Morse T.F. and He Y. F. (2000), "A novel distributed optical crack sensor for concrete structures", Eng. Fract. Mech., 65(2-3), 133-148. https://doi.org/10.1016/S0013-7944(99)00112-5
  54. Leung C.K.Y., Olson, N., Wan, K.T. and Meng, A. (2005), "Theoretical modeling of signal loss versus crack opening for a novel crack sensor", J. Eng. Mech. - ASCE, 131(8), 777-790. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:8(777)
  55. Li, C.H., Zhao, Y., Lui, H., Zhang, Z., Wan, Z., Chen, Y., Xu, X. and Xu, J. (2010), "Combined interrogation using a encapsulated fiber sensor in a tunnel", Struct. Health Monit., 9(4), 341-346. https://doi.org/10.1177/1475921710361321
  56. Li, H.N., Li, D.S. and Song, G.B. (2004), "Recent applications of fiber optic sensors to health monitoring in civil engineering", Eng. Struct., 26 (167), 1647-1657. https://doi.org/10.1016/j.engstruct.2004.05.018
  57. Li, Q., Li, G. and Wang, G. (2003), "Effect of plastic coating on strain measurement of concrete by fiber optic sensor", Measurement, 34, 215-227. https://doi.org/10.1016/S0263-2241(03)00052-6
  58. Lin, Y.B., Pan, C.L., Kuo, Y.H. and Chang, C.K. (2005), "Online monitoring of highway bridge construction using fiber Bragg grating sensors", Smart Mater. Struct., 14, 1075-1082. https://doi.org/10.1088/0964-1726/14/5/046
  59. Liu, H.W., Chen, J., Sun, M. and Ding, R. (2011), "Theoretical analysis and experimental of micromechanics and mechanics-optics coupling of distributed optic-fiber crack sensing", Science China. Technol. Sci., 54(11), 185-191.
  60. Liu, Y. and Nayak, S. Structural Health Monitoring: State of the Art and Perspectives. (2012), Journal of the Minerals, Metals and Materials Society JOM, 64(7), 789-792. https://doi.org/10.1007/s11837-012-0370-9
  61. Majumder, M., Gangopadhyay, T.K., Chakraborty, A.K., Dasgupta, K. and Bhattacharya, D.K. (2008), "Fibre Bragg gratings in structural health monitoring-Present status and applications", Sensor. Actuat., 147(1), 150-164. https://doi.org/10.1016/j.sna.2008.04.008
  62. Minardo, A., Bernini, R., Amato, L and Zeni, L. (2012a), "Bridge monitoring using Brillouin fiber-optic sensors", IEEE Sensors J., 12(1), 145-150. https://doi.org/10.1109/JSEN.2011.2141985
  63. Minardo, A., Persichetti, G., Testa, G. and Zeni, L. (2012b), "Long term structural health monitoring by Brillouin fibre-optic sensing: a real case", J. Geophys. Eng., 9(4), 64-68. https://doi.org/10.1088/1742-2132/9/4/S64
  64. Mufti, A., Thompson, D., Inaudi, D., Vogel, H.M. and McMahon, D. (2011), "Crack detection of steel girders using Brillouin optical time domain analysis", J. Civil Struct. Health Monit., 1(3), 61-68. https://doi.org/10.1007/s13349-011-0006-8
  65. Nikles, M., Thevenaz, L. and Robert, A. (1997), "Brillouin gain spectrum characterization in single-mode optical fibers", J. Lightwave Technol., 15(10), 1842-1851. https://doi.org/10.1109/50.633570
  66. Ohno, H., Naruse, H., Kihara, M. and Shimada, A. (2001), "Industrial applications of the OBTR optical fiber strain sensor", Proceedings of Optical Fiber Technology 7, Invited Paper, 45-64.
  67. Olson, N., Leung, C.K.L., and Meng, A. (2005), "Crack sensing with a multimode fiber: experimental and theoretical studies", Sensor. Actuat., 118(2), 268-277. https://doi.org/10.1016/j.sna.2004.08.025
  68. Palmieri, L. and Schenato, L. (2013), "Distributed optical fiber sensing based on Rayleigh scattering", The Open Optics Journal, 7, (Suppl-1, M7), 104-127. https://doi.org/10.2174/1874328501307010104
  69. Parker, T.R., Farhadiroushan, M., Handerek, V. and Rogers, A. (1997), "A fully distributed simultaneous strain and temperature Sensor using Spontaneous Brillouin Backscattering", IEEE Photonics Technol. Lett., 9(7), 979-981. https://doi.org/10.1109/68.593372
  70. Rajeev, P., Kodikara, J., Chiu, W.K. and Kuen, T. (2013), "Distributed optical fiber sensors and their applications in pipelines monitoring", Key Eng. Mater., 558, 424-434. https://doi.org/10.4028/www.scientific.net/KEM.558.424
  71. Ravet, F., Brifford, F., Glisic, B., Nikles, M. and Inaudi, D. (2009), "Submillimeter crack detection with Brillouin-based fiber-optic sensors", IEEE Sens. J., 9(11), 1391-1396. https://doi.org/10.1109/JSEN.2009.2019325
  72. Regier, R. (2013), Application of fiber optics on reinforced concrete structures to develop a structural health monitoring technique. M.A.Sc thesis, Queen's Univ., Kingston, ON, Canada.
  73. Regier, R. and Hoult, N.A. (2014), "Distributed strain behavior of a reinforced concrete bridge: Case study", J. Bridge Eng. - ASCE, 1-9.
  74. Rodriguez, G., Casas, J.R. and Villalba, S. (2014), "Assessing cracking characteristics of concrete structures by distributed optical fiber and non-linear finite element modelling", Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, July.
  75. Rodriguez, G., Casas, J.R. and Villalba, S. (2015), "Cracking assessment in concrete structures by distributed optical fiber", Smart Mater. Struct., 24(3), 1-11.
  76. Rogers, A. (1999), "Distributed optical-fibre sensing", Meas. Sci. Technol., 10(8), 75-99. https://doi.org/10.1088/0957-0233/10/8/201
  77. Rossi, P. and LaMaou, F. (1989), "New method for detecting cracks in concrete using fiber optics", Mater. Struct., RILEM, Paris, 22(132), 437-442. https://doi.org/10.1007/BF02472221
  78. Rouchier, S., Foray, G., Godin, N., Woloszyn, M. and Roux, J.J. (2013), "Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission", Constr. Buid. Mater., 38, 371-380. https://doi.org/10.1016/j.conbuildmat.2012.07.106
  79. Samiec, D. (2012), "Distributed fibre-optic tempetature and strain measurement with extremely high spatial resolution", Photonik International, 1, 10-13.
  80. Shen, S., Wu, Z., Yang, C., Wan, C.H., Tang, Y. and Wu, G. (2010), "An improved conjugated beam method for deformation monitoring with distributed sensitive fiber optic sensor", Struct. Health Monit., 9(4), 361-378. https://doi.org/10.1177/1475921710361326
  81. Shi, B., Sui, H., Liu, J. and Zhang, D. (2006), "The BOTDR-based distributed monitoring system for slope engineering", IAEG2006, paper 63.
  82. Soller, B., Froggatt, D., Gifford, K. and Wolfe, M.S. (2006), Measurement of Localized Heating in Fiber Optic Components with Millimetric Spatial Resolution, Optical Society of America.
  83. Tennyson, R.C., Mufti, A.A., Rizkalla, S., Tadros, G. and Benmokrane, B. (2001), "Structural health monitoring of innovative bridges in Canada with fiber optic sensors", Smart Mater. Struct., 10(3), 560-573. https://doi.org/10.1088/0964-1726/10/3/320
  84. Thevanaz, L. (2010), "Brillouin distributed time-domain sensing in optic fibers: state of the art and perspectives", Optoelectronics, China, 1-9.
  85. Thevenaz, L., Facchini, M., Fellay, A., Robert, P.H., Inaudi, D. and Dardel, B. (1999), "Monitoring of large structures using distributed Brillouin fiber sensing", Proceedings of the Optical Fiber Sensors OFS 13 Conference.
  86. Tianguo, T., Xinsheng, X. and Haowu, L. (2011), Health monitoring of civil infrastructure systems using distributed optical fiber sensors, Published by Sichuan University, Chengdu, China, School of Architecture and Environment and School of Water Resource and Hydropower.
  87. Todd, M.D., Johnson, G.A. and Vohra, S.T. (2001), "Deployment of fiber Bragg grating-based measurement system in structural health monitoring application", Smart Mater. Struct., 10(3), 534-539. https://doi.org/10.1088/0964-1726/10/3/316
  88. Torres Gorriz, B. (2012), Definicion de las pautas y condiciones de monitorizacion, encapsulado y fijacion de sensors de fibra optica para la medida de deformacion y temperatura de estructuras, Ph D. Dissertation, Technical University of Valencia, Valencia.
  89. Villalba, S. and Casas, J.R. (2013), "Application of optical fiber distributed sensing to health monitoring of concrete structures", Mech. Syst. Signal Pr., 39(1-2), 441-451. https://doi.org/10.1016/j.ymssp.2012.01.027
  90. Villalba, S. and Casas, J.R. (2011), "Monitorizacion y salud estructural. Aplicacion de la fibra optica distribuida (OBR) en estructuras de hormigon", Proceedings of the V Congreso de Puentes y Estructuras ACHE, Barcelona Spain, October.
  91. Villalba, S. (2010), Diseno y validacion experimental de uniones mediante superposicion de lazos de armaduras en viaductos de hormigon de seccion transversal evolutiva. Optimizacion del proceso constructive, Ph. D Dissertation, Technical University of Catalonia, UPC, Barcelona.
  92. Villalba, V., Casas, J.R. and Villalba, S. (2012), "Application of OBR fiber optic technology in structural health monitoring of Can Fatjo Viaduct (Cerdanyola de Valles-Spain)", Proceedings of the VI International Conference on Bridge Maintenance, Safety and Management, IABMAS 12, Stresa, Italy, July.
  93. Voss, K.F. and Wanser, K.H. (1994), "Fiber sensors for monitoring structural strain and cracks", Proceedings of the 2nd European Conference on Smart Structures and Materials, Glasgow.
  94. Wan, K.T. and Leung, C.K.Y. (2007), "Fiber optic sensor for the monitoring of mixed mode cracks in structures", Sensor. Actuat. - A, 135(2), 370-380. https://doi.org/10.1016/j.sna.2006.08.002
  95. Wan, K.T., Leung, C.K.Y. and Olson, N.G. (2008), "Investigation of strain transfer for surface-attached optical fiber strain sensors", Smart Mater. Struct., 17(3), 1-12.
  96. Ye, X.W., Su, H. and Hau, P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprenhensive review", The Scientific World Journal, Article ID 652329, 1-11.
  97. Yu, F.T.S. and Yin, S. (2012), Fiber Optic Sensors, Marcel Decker, Inc.
  98. Zako, M., Uragaki, H. and Kodate, K. (1995), "On intelligent structures using optical fiber (crack sensing using optical fiber)", J. JSMS, 44(499), 493-497.
  99. Zeni, L. (2009), "Optical fiber distributed sensors: a tool for in-situ structural and environmental monitoring", Proceedings of the IWL- 1st Italian Workshop on Landslides, Napoli, Italy, June.
  100. Zhang, B., Wang, S., Li, X., Zhou, Z., Zhang, X., Yang, G. and Qiu, M. (2013) "Online bridge crack monitoring with smart film", The Scientific World Journal, Article ID 303656,1-14.
  101. Zhang, B., Zhou, Z., Zhang, K., Yang, G. and Xu, Z. (2006), "Sensitive skin and relative sensing system for real-time surface monitoring of crack in civil infrastructure", J. Intell. Mat. Syst. Str., 17(10), 907-917. https://doi.org/10.1177/1045389X06061521
  102. Zhang, H. and Wu, Z. (2008), "Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring", Struct. Health Monit., 7(2), 143-155. https://doi.org/10.1177/1475921708089745
  103. Zhou, Z., He, J. and Ou, J. (2012), "Integrated optical fiber sensing system by combining large-scale distributed BOTDA/R and localized FBGs", Int. J. Distributed Sensor Networks, Articule ID 804394, 1-18.
  104. Zhou, Z., Zhang, B., Xia, K., Li, X., Yang, G. and Zhang, K. (2011), "Smart film for crack monitoring of concrete bridges", Struct. Health Monit., 10(3), 275-289. https://doi.org/10.1177/1475921710373288
  105. Zou, L. and Feng, M.Q. (2008), "Detection of micrometer crack by Brillouin-scattering-based distributed strain and temperature sensor", Proc. of SPIE, 7004, 1-4.

Cited by

  1. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications vol.16, pp.12, 2016, https://doi.org/10.3390/s16050748
  2. Quasi-Distributed Active-Mode-Locking Laser Interrogation with Multiple Partially Reflecting Segment Sensors vol.18, pp.12, 2018, https://doi.org/10.3390/s18124128
  3. Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona vol.14, pp.7, 2018, https://doi.org/10.1080/15732479.2018.1438479
  4. Surface Rust Detection Using Ultrasonic Waves in a Cylindrical Geometry by Finite Element Simulation vol.3, pp.3, 2015, https://doi.org/10.3390/infrastructures3030029
  5. Shear crack pattern identification in concrete elements via distributed optical fibre grid vol.15, pp.12, 2019, https://doi.org/10.1080/15732479.2019.1640256
  6. A Critical Review of Sensors for the Continuous Monitoring of Smart and Sustainable Railway Infrastructures vol.12, pp.22, 2015, https://doi.org/10.3390/su12229428
  7. Crack monitoring in reinforced concrete beams by distributed optical fiber sensors vol.17, pp.1, 2015, https://doi.org/10.1080/15732479.2020.1731558
  8. Overcoming Challenges of Distributed Fiber-Optic Sensing for Highway Traffic Monitoring vol.2675, pp.2, 2021, https://doi.org/10.1177/0361198120960134
  9. Long-Term Performance of Distributed Optical Fiber Sensors Embedded in Reinforced Concrete Beams under Sustained Deflection and Cyclic Loading vol.21, pp.19, 2021, https://doi.org/10.3390/s21196338
  10. Comparison of DOFS Attachment Methods for Time-Dependent Strain Sensing vol.21, pp.20, 2015, https://doi.org/10.3390/s21206879
  11. Assessment and visualization of performance indicators of reinforced concrete beams by distributed optical fibre sensing vol.20, pp.6, 2015, https://doi.org/10.1177/1475921720984431