DOI QR코드

DOI QR Code

Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film

수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향

  • Jo, Yejin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Yeong-Hui (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Sunho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Youngmin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Eui Duk (Nano R&D Center, Hanwha Chemical Research & Development Center) ;
  • Oh, Seok Heon (Nano R&D Center, Hanwha Chemical Research & Development Center) ;
  • Ryu, Beyong-Hwan (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 조예진 (한국화학연구원 그린화학소재본부) ;
  • 서영희 (한국화학연구원 그린화학소재본부) ;
  • 정선호 (한국화학연구원 그린화학소재본부) ;
  • 최영민 (한국화학연구원 그린화학소재본부) ;
  • 김의덕 (한화중앙연구소, 나노R&D센터) ;
  • 오석헌 (한화중앙연구소, 나노R&D센터) ;
  • 류병환 (한국화학연구원 그린화학소재본부)
  • Received : 2015.12.21
  • Accepted : 2015.12.26
  • Published : 2015.12.27

Abstract

For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the "Newtonian flow" and has a low viscosity under $10mPa{\cdots}S$, which is applicable to inkjet printing. The Cu patterns with a linewidth of $50{\sim}60{\mu}m$ are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co-maleic acid)-free inks. The resistivities of Cu films are measured to be $10{\sim}15{\mu}{\Omega}{\cdot}cm$ at annealing temperature of $300^{\circ}C$.

Keywords

References

  1. S. Jeong, H. Song, W. Lee, S. Lee, Y. Choi, W. Son, E. Kim, C. Paik, S. Oh, and B. Ryu, Langmuir, 27, 3144 (2011). https://doi.org/10.1021/la104136w
  2. Y. Choi and S. Hong, Langmuir, 31, 8101 (2015). https://doi.org/10.1021/acs.langmuir.5b01207
  3. G. L. Draper, R. Dharmadasa, M. E. Staats, B. W. Lavery and T. Druffel, ACS Appl. Mater. Interfaces, 7, 16478 (2015). https://doi.org/10.1021/acsami.5b03854
  4. J. Park, G. Kang, H. Ahn and L. Guo, J. Adv. Mater., 22, E247 (2010). https://doi.org/10.1002/adma.201000250
  5. Y. Li, Y. Wu and B. Ong, J. Am. Chem. Soc., 127, 3266 (2005). https://doi.org/10.1021/ja043425k
  6. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  7. R. K. Holman, S. A. Uhland, M. Cima and J. E. Sachs, J. Colloid Interface Sci., 247, 266 (2002). https://doi.org/10.1006/jcis.2001.8117
  8. P. Chantal, J. Robert, K. Arnold, M. Olga, F. Julie, L. Sylvie and M. Patrick. Org. Electron., 15, 1836 (2014). https://doi.org/10.1016/j.orgel.2014.05.014
  9. P. Buffat and J. P. Borel, Phys. Rev. A: At. Mol. Opt. Phys., 13, 2287 (1976). https://doi.org/10.1103/PhysRevA.13.2287
  10. S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. Xia and J. Moon, Adv. Funct. Mater., 18, 679 (2008). https://doi.org/10.1002/adfm.200700902
  11. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger and E. J. List, Adv. Funct. Mater., 17, 3111 (2007). https://doi.org/10.1002/adfm.200600762
  12. K. Woo, D. Kim, J. S. Kim, S. Lim and J. Moon, Langmuir, 25, 429 (2009). https://doi.org/10.1021/la802182y
  13. B. J. Gans, ; U. S. Schubert, Langmuir, 20, 7789 (2004). https://doi.org/10.1021/la049469o
  14. D. Soltman and V. Subramanian, Langmuir, 24, 2224 (2008). https://doi.org/10.1021/la7026847
  15. R. Prucek, L. Kvitek, A. Panacek, L. Vancurova, J. Soukupova, D. Jancik and R. J. Zboril, Mater. Chem., 19, 8463 (2009). https://doi.org/10.1039/b913561h
  16. B. Escaig, J. de Physique IV, 03(C7), C7-753 (1993).
  17. J. D. Venables, J. Mater. Sci., 19, 2431 (1984). https://doi.org/10.1007/BF00550796
  18. G. Ramarathnam, M. Libertucci, M. M. Sadowski and T. H. North, Weld. Res. Suppl., 12, 483S (1992).