DOI QR코드

DOI QR Code

First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties

  • Kang, Byung-Sub (Nanotechnology Research Center, Dept. of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Song, Kie-Moon (Nanotechnology Research Center, Dept. of Nano Science and Mechanical Engineering, Konkuk University)
  • Received : 2015.07.31
  • Accepted : 2015.12.10
  • Published : 2015.12.31

Abstract

The ferromagnetic and electronic structure for the $Al_xGa_{1-x}P$ and Mn-doped $AlGaP_2$ was studied by using the self-consistent full-potential linear muffin-tin orbital method. The lattice parameters of un-doped $Al_xGa_{1-x}P$ (x = 0.25, 0.5, and 0.75) were optimized. The band-structure and the density of states of Mn-doped $AlGaP_2$ with or without the vacancy were investigated in detail. The P-3p states at the Fermi level dominate rather than the other states. Thus a strong interaction between the Mn-3d and P-3p states is formed. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the (Mn-3d)-(P-3p)-(Mn-3d) hybridization, which is attributed by the partially filled P-3p bands. The holes are mediated with keeping their 3d-characters, therefore the ferromagnetic state is stabilized by this double-exchange mechanism.

Keywords

References

  1. T. Fukumura, Zhengwu Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999). https://doi.org/10.1063/1.125353
  2. K. Sato and H. Katayama-Yoshida, Phys. Stat. Sol. (b) 229, 673 (2002). https://doi.org/10.1002/1521-3951(200201)229:2<673::AID-PSSB673>3.0.CO;2-7
  3. Priya Mahadevan and Alex Zunger, Phys. Rev. B69, 115211 (2004). https://doi.org/10.1103/PhysRevB.69.115211
  4. X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, and C. Stampfl, Phys. Rev. B75, 155205 (2007). https://doi.org/10.1103/PhysRevB.75.155205
  5. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. and Engin. R 40, 137 (2003). https://doi.org/10.1016/S0927-796X(02)00136-5
  6. J. Choi, S. Choi, S. C. Hong, S. Cho, M. H. Sohn, Y. Park, K. W. Lee, H. Y. Park, J. H. Song, and J. B. Ketterson, J. of Korean Phys. Soc. 47, S497 (2005).
  7. S. Choi, G.-B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S.-Y. Jeong, and G.-C. Yi, Solid State Comm. 122, 165 (2002). https://doi.org/10.1016/S0038-1098(02)00094-7
  8. Sunglae Cho, Sungyoul Choi, Gi-beom Cha, Soon Cheol Hong, Yunki Kim, Yu-Jun Zhao, Arthur J. Freeman, John B. Ketterson, B. J. Kim, Y. C. Kim, and Byung-Chun Choi, Phy. Rev. Lett. 88, 257203-1 (2002). https://doi.org/10.1103/PhysRevLett.88.257203
  9. S. Y. Savrasov, Phys. Rev. B54, 16470 (1996). https://doi.org/10.1103/PhysRevB.54.16470
  10. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  11. C. Kittel, Introduction to Solid State Physics Seventh ed., John Wiley & Sons (1996).
  12. Nadir Bouarissa, Materials Chemistry and Physics, 124, 336 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.043
  13. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. and Eng. R 40, 137 (2003). https://doi.org/10.1016/S0927-796X(02)00136-5
  14. J. H. Park, S. K. Kwon, and B. I. Min, Physica B 281&282, 703 (2000).