DOI QR코드

DOI QR Code

Preparation and Magnetic Properties of MnBi Alloy and its Hybridization with NdFeB

  • Truong, Nguyen Xuan (Institute of Materials Science, Vietnam Academy of Science and Technology) ;
  • Vuong, Nguyen Van (Institute of Materials Science, Vietnam Academy of Science and Technology)
  • Received : 2015.08.07
  • Accepted : 2015.10.13
  • Published : 2015.12.31

Abstract

MnBi alloys were fabricated by arc melting and annealing at 573 K. The heat treatment enhanced the content of the low-temperature phase (LTP) of MnBi up to 83 wt%. The Bi-excess assisted LTP MnBi alloys were used in the hybridization with the Nd-Fe-B commercial Magnequench ribbons to form the hybrid magnets (100-x)NdFeB/xMnBi, x = 20, 30, 40, 50, and 80 wt%. The as-milled powder mixtures of Nd-Fe-B and MnBi were aligned in a magnetic field of 18 kOe and warm-compacted to anisotropic and dense bulk magnets at 573 K by 2,000 psi for 10 min. The magnetic ordering of two hard phase components strengthened by the exchange coupling enhanced the Curie temperature ($T_c$) of the magnet in comparison to that of the powder mixture sample. The prepared hybrid magnets were highly anisotropic with the ratio $M_r/M_s$ > 0.8. The exchange coupling was high, and the coercivity $_iH_c$ of the magnets was ~11-13 kOe. The maximum value of the energy product $(BH)_{max}$ was 8.4 MGOe for the magnet with x = 30%. The preparation of MnBi alloys and hybrid magnets are discussed in details.

Keywords

References

  1. Ding Kaihong, EPJ Web of Conferences 75, 04005 (2014).
  2. J. M. D. Coey, Scripta Materialia 67, 524 (2012). https://doi.org/10.1016/j.scriptamat.2012.04.036
  3. P. Kharel, V. R. Shah, R. Skomski, J. E. Shield, and D. J. Sellmyer, IEEE Trans. Magn. 49, 3318 (2013). https://doi.org/10.1109/TMAG.2013.2245497
  4. M. J. Kramer, R. W. McCallum, I. A. Anderson, and S. Constantinides, JOM 64, 752 (2012). https://doi.org/10.1007/s11837-012-0351-z
  5. V. Ly, X. Wu, L. Smillie, T. Shoji, A. Kato, A. Manabe, and K. Suzuki, J. Alloys Compd. 615, Supplement 1, S285 (2014). https://doi.org/10.1016/j.jallcom.2014.01.120
  6. C. Chinnasamy, M. M. Jasinski, A. Ulmer, Li Wanfeng, G. Hadjipanayis, and Liu, Jinfang, IEEE Trans. Magn. 48, 3641 (2012). https://doi.org/10.1109/TMAG.2012.2201146
  7. J. Cui, J. P. Choi, G. Li, E. Polikarpov, J. Darsell, M. J. Kramer, N. A. Zarkevich, L. L. Wang, D. D. Johnson, M. Marinescu, Q. Z. Huang, H. Wu, N. V. Vuong, and J. P. Liu, J. Appl. Phys. 115, 17A743 (2014). https://doi.org/10.1063/1.4867230
  8. J. Cui, J. P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, T. Droubay, M. J. Kramer, N. A. Zarkevich, L. L. Wang, D. D. Johnson, M. Marinescu, I. Takeuchi, Q. Z. Huang, H. Wu, H. Reeve, N. V. Vuong, and J. P. Liu, J. Physics: Condensed Matter 26, 064212 (2014). https://doi.org/10.1088/0953-8984/26/6/064212
  9. V. Vuong Nguyen, N. Poudyal, X. B. Liu, J. Ping Liu, K. Sun, M. J. Kramer, and J. Cui, Materials Research Express 1, 036108 (2014). https://doi.org/10.1088/2053-1591/1/3/036108
  10. N. V. Rama Rao, A. M. Gabay, and G. C. Hadjipanayis, J. Phys. D: Appl. Phys. 46, 062001 (2013). https://doi.org/10.1088/0022-3727/46/6/062001
  11. Van Vuong, Nguyen, Poudyal, N., Xubo, Liu, Liu, J. P., Kewei, Sun, Kramer, M. J., and Jun, Cui, IEEE Trans. Magn. 50, 1 (2014).
  12. Y. Mitsui, K. Koyama, and K. Watanabe, Mater. Trans. 54, 242 (2013). https://doi.org/10.2320/matertrans.M2012310
  13. Y. B. Yang, X. G. Chen, S. Guo, A. R. Yan, Q. Z. Huang, M. M. Wu, D. F. Chen, Y. C. Yang, and J. B. Yang, J. Magn. Magn. Mater. 330, 106 (2013). https://doi.org/10.1016/j.jmmm.2012.10.046
  14. Y. B. Yang, X. G. Chen, R. Wu, J. Z. Wei, X. B. Ma, J. Z. Han, H. L. Du, S. Q. Liu, C. S. Wang, Y. C. Yang, Y. Zhang, and J. B. Yang, J. Appl. Phys. 111, 07E312 (2012). https://doi.org/10.1063/1.3672086
  15. D. T. Zhang, W. T. Geng, M. Yue, W. Q. Liu, J. X. Zhang, J. A. Sundararajan, and Y. Qiang, J. Magn. Magn. Mater. 324, 1887 (2012). https://doi.org/10.1016/j.jmmm.2012.01.017
  16. S. Cao, M. Yue, Y. X. Yang, D. T. Zhang, W. Q. Liu, J. X. Zhang, Z. H. Guo, and W. Li, J. Appl. Phys. 109, 07A740 (2011). https://doi.org/10.1063/1.3564966
  17. N. V. R. Rao, A. M. Gabay, and G. C. Hadjipanayis, IEEE Trans. Magn. 49, 3255 (2013). https://doi.org/10.1109/TMAG.2013.2240274
  18. Y. B. Yang, J. Z. Wei, X. L. Peng, Y. H. Xia, X. G. Chen, R. Wu, H. L. Du, J. Z. Han, C. S. Wang, Y. C. Yang, and J. B. Yang, J. Appl. Phys. 115, 17A721 (2014). https://doi.org/10.1063/1.4865213
  19. Ryuichi Habu, Mater. Trans. JIM 40, 1355 (1999). https://doi.org/10.2320/matertrans1989.40.1355
  20. A. Feygenson and J. N. Zemel, Thin Solid Film 157, 49 (1988). https://doi.org/10.1016/0040-6090(88)90345-8
  21. R. R. Mohanty, J. E. Guyer, and Y. H. Sohn, J. Appl. Phys. 106, 034912 (2009). https://doi.org/10.1063/1.3190607
  22. M. W. Muller and R. S. Indeck, J. Appl. Phys. 75, 2289 (1994). https://doi.org/10.1063/1.356294
  23. M. S. Leu, C. S. Tsai, C. S. Lin, and S. T. Lin, IEEE Trans. Magn. 27, 5414 (1991). https://doi.org/10.1109/20.278856

Cited by

  1. Preparation and Magnetic Properties of MnBi/Co Nanocomposite Magnets vol.46, pp.6, 2017, https://doi.org/10.1007/s11664-017-5345-8
  2. Relating atomic local structures and Curie temperature of NdFeB permanent magnets: an X-ray absorption spectroscopic study pp.1867-7185, 2017, https://doi.org/10.1007/s12598-017-0918-5