DOI QR코드

DOI QR Code

Pulsed Electromagnetic Fields to Influence Pain and Muscle Healing Following Muscle Injury in Rats

  • Koo, Hyun-Mo (Department of Physical Therapy, College of Science, Kyungsung University) ;
  • Na, Sang-Su (Department of Physical Therapy, Daegu University) ;
  • Yong, Min-Sik (Department of Physical Therapy, Youngsan University)
  • Received : 2015.07.21
  • Accepted : 2015.08.10
  • Published : 2015.12.31

Abstract

Muscle contusion has a negative effect on muscle function. Although several studies showed that pain control and muscle recovery is facilitated by pulsed electromagnetic fields (PEMF), there has not been much research regarding the specific effects of PEMF on them. The aim of the present study is to investigate effects of PEMF on pain and muscle recovery following extensor digitorum longus (EDL) contusion injury through measuring the expression of the c-fos proto-oncogene and nerve growth factor (NGF). Significantly reduced c-fos expression in the spinal cord was shown in PEMF groups compared with control (CON) groups. There was no significant difference between PEMF1 and CON1, but significantly increased NGF expression was shown in PEMF3 and PEMF5 compared with in CON groups, where the numbers in the group names are the days from contusion. In conclusion, PEMF could be used to not only reduce pain in muscle injuries by down-regulating c-fos expression in the spinal cord, but it could also influence muscle healing through increasing NGF expression in the injured muscle.

Keywords

References

  1. M. H. Kim and S. H. Cheon, J. Magn. 17, 68 (2012). https://doi.org/10.4283/JMAG.2012.17.1.068
  2. T. A. Jarvinen, T. L. Jarvinen, M. Kaariainen, H. Kalimo, and M. Jarvinen, Am. J. Sports Med. 33, 745 (2005). https://doi.org/10.1177/0363546505274714
  3. C. D. Markert, M. A. Merrick, T. E. Kirby, and S. T. Devor, Arch. Phys. Med. Rehabil. 86, 1304 (2005). https://doi.org/10.1016/j.apmr.2004.12.037
  4. G. L. Cheing, J. W. Wan, and S. Kai Lo, J. Rehabil Med. 37, 372 (2005). https://doi.org/10.1080/16501970510041055
  5. L. Quintero, M. C. Cuesta, J. A. Silva, J. L. Arcaya, L. Pinerua-Suhaibar, W. Maixner, and H. Suarez-Roca, Brain Res. 965, 259 (2003). https://doi.org/10.1016/S0006-8993(02)04224-5
  6. G. H. Zhang, S. S. Min, K. S. Lee, S. K. Back, S. J. Yoon, Y. W. Yoon, Y. I. Kim, H. S. Na, S. K. Hong, and H. C. Han, Anesth Analg. 99, 152 (2004). https://doi.org/10.1213/01.ANE.0000117141.76392.65
  7. J. Huard, Y. Li, and F. H. Fu, J. Bone Joint Surg. Am. 84, 822 (2002). https://doi.org/10.2106/00004623-200205000-00022
  8. H. Kim, Q. Li, B. L. Hempstead, and J. A. Madri, J. Biol. Chem. 279, 33538 (2004). https://doi.org/10.1074/jbc.M404115200
  9. G. Chevrel, R. Hohlfeld, and M. Sendtner, Muscle Nerve. 33, 462 (2006). https://doi.org/10.1002/mus.20444
  10. K. Hug and M. Roosli, Bioelectromagnetics 33, 95 (2012). https://doi.org/10.1002/bem.20703
  11. J.-H. Kang, S.-Y. Park, and Y.-S. Lee, J. Magn. 16, 253 (2011). https://doi.org/10.4283/JMAG.2011.16.3.253
  12. D. Galace de Freitas, F. B. Marcondes, R. L. Monteiro, S. G. Rosa, P. Maria de Moraes Barros Fucs, and T. Y. Fukuda, Arch. Phys. Med. Rehabil. 95, 345 (2014). https://doi.org/10.1016/j.apmr.2013.09.022
  13. N. M. Shupak, F. S. Prato, and A. W. Thomas, Radio Science Bulletin 307, 9 (2003).
  14. B. Mollon, V. da Silva, J. W. Busse, T. A. Einhorn, and M. Bhandari, J. Bone Joint Surg. Am. 90, 2322 (2008). https://doi.org/10.2106/JBJS.H.00111
  15. P. Vavken, F. Arrich, O. Schuhfried, and R. Dorotka, J. Rehabil Med. 41, 406 (2009). https://doi.org/10.2340/16501977-0374
  16. K. Ganesan, A. C. Gengadharan, C. Balachandran, B. M. Manohar, and R. Puvanakrishnan, Indian J. Exp. Biol. 47, 939 (2009).
  17. C. Clow and B. J. Jasmin, Mol. Biol. Cell 21, 2182 (2010). https://doi.org/10.1091/mbc.E10-02-0154
  18. K. Sakuma and A. Yamaguchi, J. Biomed Biotechnol. 2011, 201696 (2011).