DOI QR코드

DOI QR Code

Modeling of 3-stage Electromagnetic Induction Launcher

  • Received : 2015.05.12
  • Accepted : 2015.09.09
  • Published : 2015.12.31

Abstract

Electromagnetic Induction Launchers (EIL) have been receiving great attention due to their advantages of non-contact between the coils and a projectile. This paper describes the modeling and design of 3-stage EIL to accelerate a copper projectile of 50 kg with 290 mm diameter. Our EIL consists of three independent driving coils and pulsed power modules to generate separate driving currents. To find efficient acceleration conditions, the appropriate shape of the driving coils and the position of the projectile have been calculated by using a finite element analysis (FEA) method. The results showed that the projectile can be accelerated more effectively as the gap between the coils is smaller; a final velocity of 45 m/s was obtained. The acceleration efficiency was estimated to be 23.4% when a total electrical energy of 216 kJ was discharged.

Keywords

References

  1. K. McKinney and P. Mongeau, IEEE Trans. Magn. 20, 239 (1984). https://doi.org/10.1109/TMAG.1984.1063089
  2. R. Kaye, B. Turman, M. Aubuchon, D. Lamppa, G. Mann, Edward van Reuth, K. Fulton, G. Malejko, P. Magnotti, D. Nguyen, D. Borgwarth, A. Johnson, and R. Poppe, in Proc. 16th IEEE Int. Pulsed Power Conf., 1810 (2007).
  3. M. S. Aubuchont, T. R. Lockner, and B. N. Turman, in Proc. 15th IEEE Int. Pulsed Power Conf., 75 (2005).
  4. B. D. Skurdal and R. L. Gaigler, IEEE Trans. Magn. 45, 458 (2009). https://doi.org/10.1109/TMAG.2008.2008551
  5. S. Barmada, A. Musolino, M. Raugi, and R. Rizzo, IEEE Trans. Magn. 37, 111 (2001). https://doi.org/10.1109/20.911802
  6. R. J. Kaye, IEEE Trans. Magn. 41, 194 (2005). https://doi.org/10.1109/TMAG.2004.838982
  7. Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. W. Lim, B. Lee, S. H. Kim, S. An, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 41, 2671 (2013). https://doi.org/10.1109/TPS.2013.2276108
  8. B. Lee, S. An, S. H. Kim, Y. H. Lee, K. S. Yang, Y. S. Jin, Y. B. Kim, J. S. Kim, C. Cho, S. H. Yoon, and I. S. Koo, IEEE Trans. Plasma Sci. 42, 2886 (2014). https://doi.org/10.1109/TPS.2013.2295225
  9. H. Kolm and P. Mongeau, IEEE Trans. Magn. 20, 227 (1984). https://doi.org/10.1109/TMAG.1984.1063050
  10. S. Babic, F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R Ravaud, IEEE Trans. Magn. 47, 2034 (2011). https://doi.org/10.1109/TMAG.2011.2125796
  11. K. A. Polzin, J. E. Adwar, and A. K. Hallock, IEEE Trans, Magn. 49, 1453 (2013). https://doi.org/10.1109/TMAG.2012.2230271
  12. S. Madhavan, C. D. Sijoy, S. Pahari, S. Chaturvedi, and IPF Team, IEEE Trans. Plasma Sci. 42, 323 (2014). https://doi.org/10.1109/TPS.2013.2294718
  13. X. Tao, S. Wang, Y. Huangfu, S. Wang, and Y. Wang, IEEE Trans. Plasma Sci. 43, 1208 (2015). https://doi.org/10.1109/TPS.2015.2406778

Cited by

  1. Design and modeling of an electromagnetic launcher for weft insertion system pp.1746-7748, 2018, https://doi.org/10.1177/0040517518755793