DOI QR코드

DOI QR Code

Proximate Composition, and ʟ-Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken

  • Jung, Samooel (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Bae, Young Sik (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Yong, Hae In (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Lee, Hyun Jung (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Seo, Dong Won (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Park, Hee Bok (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Jun Heon (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Jo, Cheorun (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University)
  • 투고 : 2015.03.22
  • 심사 : 2015.05.22
  • 발행 : 2015.12.01

초록

This study investigated the proximate composition and $\small{L}$-carnitine and betaine content of meats from 5 lines of Korean indigenous chicken (KIC) for developing highly nutritious meat breeds with health benefits from the bioactive compounds such as $\small{L}$-carnitine and betaine in meat. In addition, the relevance of gender (male and female) and meat type (breast and thigh meat) was examined. A total of 595 F1 progeny (black [B], grey-brown [G], red-brown [R], white [W], and yellow-brown [Y]) from 70 full-sib families were used. The moisture, protein, fat, and ash contents of the meats were significantly affected by line, gender, and meat type (p<0.05). The males in line G and females in line B showed the highest protein and the lowest fat content of the meats. $\small{L}$-carnitine and betaine content showed effects of meat type, line, and gender (p<0.05). The highest $\small{L}$-carnitine content was found in breast and thigh meats from line Y in both genders. The breast meat from line G and the thigh meat from line R had the highest betaine content in males. The female breast and thigh meats showed the highest betaine content in line R. These data could be valuable for establishing selection strategies for developing highly nutritious chicken meat breeds in Korea.

키워드

참고문헌

  1. Abuzaid, A. A. 2010. Variation of carnitine concentrations in Angus beef. M.S. Thesis, Iowa State University, Ames, IA, USA.
  2. Arslan, C., M. Citil, and M. Saatci. 2003. Effects of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr. 57:381-388. https://doi.org/10.1080/00039420310001607734
  3. Association of Official Agricultural Chemists. 1995. Official Methods of Analysis of AOAC International. Association of Official Agricultural Chemists, 16th Ed. Washington, DC, USA.
  4. Biesalski, H. K. 2005. Meat as a component of a healthy diet-are there any risks or benefits if meat is avoided in the diet? Meat Sci. 70:509-524. https://doi.org/10.1016/j.meatsci.2004.07.017
  5. Borum, P. R. 1978. Variation in tissue carnitine concentrations with age and sex in the rat. Biochem. J. 176:677-681. https://doi.org/10.1042/bj1760677
  6. Choe, J. H., K. C. Nam, S. Jung, B. N. Kim, H. J. Yun, and C. R. Jo. 2010. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J. Food Sci. An. 30:13-19. https://doi.org/10.5851/kosfa.2010.30.1.13
  7. Cholewa, J. M., M. Wyszczelska-Rokiel, R. Glowacki, H. Jakubowski. T. Matthews, R. Wood, S. A. S. Craig, and V. Paolone. 2013. Effects of betaine on body composition, performance, and homocysteine thiolactone. J. Int. Soc. Sport Nutr. 10:39-50. https://doi.org/10.1186/1550-2783-10-39
  8. Craig, S. A. S. 2004. Betaine in human nutrition. Am. J. Clin. Nutr. 80:539-549. https://doi.org/10.1093/ajcn/80.3.539
  9. Dragolovich, J. 1994. Dealing with salt stress in animal cells: the role and regulation of glycine betaine concentrations. J. Exp. Zool. 268:139-144. https://doi.org/10.1002/jez.1402680211
  10. Ehrenborg, E. and A. Krook. 2009. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferatoractivated receptor ${\delta}$. Pharmacol. Rev. 61:373-393. https://doi.org/10.1124/pr.109.001560
  11. Flanagan, J. L., P. A. Simmons, J. Vehige, M. D. P. Willcox, and Q. Garrett. 2010. Role of carnitine in disease. Nutr. Metab. 7:1-14. https://doi.org/10.1186/1743-7075-7-1
  12. Hoppel, C. 2003. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 41:S4-S12.
  13. Jang, A., D. Kim, K. S. Sung, S. Jung, H. J. Kim, and C. Jo. 2014. The effect of dietary $\alpha$-lipoic acid, betaine, L-carnitine, and swimming on the obesity of mice induced by a high-fat diet. Food Funct. 5:1966-1974. https://doi.org/10.1039/C4FO00246F
  14. Jayasena, D. D., S. Jung, H. J. Kim, Y. S. Bae, H. I. Yong, J. H. Lee, J. G. Kim, and C. Jo. 2013. Comparison of quality traits of meat from Korean native chickens and broilers used in two different traditional Korean cuisines. Asian Australas. J. Anim. Sci. 26:1038-1046. https://doi.org/10.5713/ajas.2012.12684
  15. Jayasena, D. D., S. Jung, Y. S. Bae, H. B. Park, J. H. Lee, and C. Jo. 2015. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from broilers and indigenous chickens. J. Food Compost. Anal. 37:20-24. https://doi.org/10.1016/j.jfca.2014.06.016
  16. Jayasena, D. D., S. Jung, Y. S. Bae, S. H. Kim, S. K. Lee, J. H. Lee, and C. Jo. 2014. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poult. Sci. 93:1842-1849. https://doi.org/10.3382/ps.2013-03721
  17. Jung, S., K. H. Lee, K. C. Nam, H. J. Jeon, J. H. Choe, and C. Jo. 2014. Quality assessment of the breast meat from WoorimatdagTM and broilers. Korean J. Food Sci. An. 34:707-714.
  18. Jung, S., Y. S. Bae, H. J. Kim, D. D. Jayasena, J. H. Lee, H. B. Park, K. N. Heo, and C. Jo. 2013. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 92:3275-3282. https://doi.org/10.3382/ps.2013-03441
  19. Jung, Y., H. J. Jeon, S. Jung, J. H. Choe, J. H. Lee, K. N. Heo, B. S. Kang, and C. Jo. 2011. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Korean J. Food Sci. An. 31:684-692. https://doi.org/10.5851/kosfa.2011.31.5.684
  20. Lee, H. J., D. D. Jayasena, S. H. Kim, H. J. Kim, K. N. Heo, J. E. Song, and C. Jo. 2015. Comparison of bioactive compounds and quality traits of breast meat from Korean native ducks and commercial ducks. Korean J. Food Sci. An. 35:114-120. https://doi.org/10.5851/kosfa.2015.35.1.114
  21. Li, K., W. Li, and Y. Huang. 2007. Determination of free Lcarnitine in human seminal plasma by high performance liquid chromatography with pre-column ultraviolet derivatization and its clinical application in male infertility. Clin. Chim. Acta 378:159-163. https://doi.org/10.1016/j.cca.2006.11.008
  22. Lopez, K. P., M. W. Schilling, and A. Corzo. 2011. Broiler genetic strain and sex effects on meat characteristics. Poult. Sci. 90:1105-1111. https://doi.org/10.3382/ps.2010-01154
  23. Mahmoudnia, N. and Y. Madani. 2012. Effect of betaine on performance and carcass composition of broiler chicken in warm weather: A review. Int. J. Agric. Sci. 2:675-683.
  24. Mateescu, R. G., A. J. Garmyn, N. A. O'Neil, R. G. Tait, A. Abuzaid, M. S. Mayes, D. J. Garrick, A. L. Van Eenennaam, D. L. Van Overbeke, G. G. Hilton, D. C. Beitz, and J. M. Reecy. 2012. Genetic parameters of carnitine, creatine, creatinine, carnosine, and anserine concentration in longissimus muscle and their association with palatability traits in Angus cattle. J. Anim. Sci. 90:4248-4255. https://doi.org/10.2527/jas.2011-5077
  25. OECD-FAO Agricultural Outlook 2009-2018. http://www.oecd.org/berlin/43042301.pdf. Accessed July 1, 2015.
  26. Patrick, L. 2002. Nonalcoholic fatty liver disease: relationship to insulin sensitivity and oxidative stress: Treatment approaches using vitamin E, magnesium, and betaine. Altern. Med. Rev. 7:276-291.
  27. Patterson, K. Y., S. A. Bhagwat, J. R. Williams, J. C. Howe, J. M. Holden, S. H. Zeisel, K. A. Dacosta, and M. H. Mar. 2008. USDA database for the choline content of common foods, release two. http://www.ars.usda.gov/SP2UserFiles/Place/80400525/Data/Choline/Choln02.pdf. Accessed July 1, 2015.
  28. Rigault, C., F. Mazue, A. Bernard, J. Demarquoy, and F. Le Borgne. 2008. Changes in L-carnitine content of fish and meat during domestic cooking. Meat Sci. 78:331-335. https://doi.org/10.1016/j.meatsci.2007.06.011
  29. Schmid, A. 2009. Bioactive substances in meat and meat products. Fleischwirtschaft 89:83-90.
  30. Shimada, K., Y. Sakuma, J. Wakamatsu, M. Fukushima, M. Sekikawa, K. Kuchida, and M. Mikami. 2004. Species and muscle differences in L-carnitine levels in skeletal muscles based on a new simple assay. Meat Sci. 68:357-362. https://doi.org/10.1016/j.meatsci.2004.04.003
  31. Steiber, A., J. Kerner, and C. L. Hoppel. 2004. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Aspects Med. 25:455-473. https://doi.org/10.1016/j.mam.2004.06.006
  32. Suchy, P., P. Jelinek, E. Strakova, and J. Hucl. 2002. Chemical composition of muscles of hybrid broiler chickens during prolonged feeding. Czech J. Anim. Sci. 47:511-518.
  33. Thomas, N. L., T. C. Grey, J. M. Jones, D. Robinson, and S. W. Stock. 1984. Observations on the effect of age and sex on the nitrogen factor of chicken carcass parts including the edible offals. Int. J. Food Sci. Technol. 19:11-15.
  34. Wattanachant, S., S. Benjakul, and D. A. Ledward. 2004. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 83:123-128. https://doi.org/10.1093/ps/83.1.123

피인용 문헌

  1. An Overview of Meat Industry in Sri Lanka: A Comprehensive Review vol.36, pp.2, 2016, https://doi.org/10.5851/kosfa.2016.36.2.137
  2. Subsequent Effect of Dietary Lysine Regimens Fed in the Starter Phase on the Growth Performance, Carcass Traits and Meat Chemical Composition of Aseel Chicken in the Grower Phase vol.20, pp.3, 2018, https://doi.org/10.1590/1806-9061-2017-0681
  3. Effect of Dietary Lysine Regimens on Growth Performance and Meat Composition in Aseel Chicken vol.20, pp.2, 2018, https://doi.org/10.1590/1806-9061-2017-0584
  4. 폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.411
  5. 신품종 교배조합 토종닭의 생산성과 육질 및 시판 품종과의 비교분석 vol.45, pp.2, 2018, https://doi.org/10.5536/kjps.2018.45.2.125
  6. Quality Characteristics of Low-salt Chicken Sausage Supplemented with a Winter Mushroom Powder vol.38, pp.4, 2018, https://doi.org/10.5851/kosfa.2018.e15
  7. Comparative Proteomics of Meat Spoilage Bacteria Predicts Drivers for Their Coexistence on Modified Atmosphere Packaged Meat vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00209
  8. Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study vol.10, pp.4, 2015, https://doi.org/10.3390/biology10040299