DOI QR코드

DOI QR Code

Preparation of Nanosized Gold Particles by Microwave Irradiation and Kinetics Study for Reduction of 4-Nitroaniline under Various Conditions

  • Kim, Jae Jin (Department of Chemistry, Sahmyook University) ;
  • Ko, Weon Bae (Department of Chemistry, Sahmyook University)
  • Received : 2015.09.15
  • Accepted : 2015.10.14
  • Published : 2015.12.31

Abstract

Nanosized gold particles were synthesized by microwave irradiation in a mixture composed of potassium tetrachloroaurate(III) n-hydrate, sodium citrate dihydrate and Tween 20. The synthesized gold particles were characterized by UV-vis spectrophotometer, scanning electron microscopy, and X-ray diffraction techniques. Using UV-vis spectroscopy, it was confirmed that gold nanoparticles act as a catalyst in the reduction of 4-nitroaniline with sodium borohydride to form 1,4-diaminobenzene. Additionally, we studied the kinetics of this reductive reaction in the presence of these gold nanoparticles under various conditions.

Keywords

References

  1. S. Mayavan, N. K. Dutta, N. R. Choudhury, M. Kim, C. M. Elvin, and A. J. Hill, "Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin", Biomaterials, 32, 2786 (2011). https://doi.org/10.1016/j.biomaterials.2010.12.030
  2. Q. Zhou, G. Qian, Y. Li, G. Zhao, Y. Chao, and J. Zheng, "Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline", Thin Solid Films, 516, 953 (2008). https://doi.org/10.1016/j.tsf.2007.06.012
  3. N. Alexeyeva, L. Matisen, A. Saar, P. Laaksonen, K. Kontturi, and K. Tammeveski, "Kinetics of oxygen reduction on gold nanoparticle/multi-walled carbon nanotube hybrid electrodes in acid media", J. Electroanal. Chem., 642, 6 (2010). https://doi.org/10.1016/j.jelechem.2010.01.023
  4. N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Norskov, "On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation", J. Catal., 223, 232 (2004). https://doi.org/10.1016/j.jcat.2004.01.001
  5. P. Ghosh, G. Han, M. De, C. K. Kim, and W. M. Rotello, "Gold nanoparticles in delivery applications", Adv. Drug Deliver. Rev., 60, 1307 (2008). https://doi.org/10.1016/j.addr.2008.03.016
  6. S. Gautam, S. P. Kamble, S. B. Sawant, and W. G. Pangarkar, "Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation", Chem. Eng. J., 110, 129 (2005). https://doi.org/10.1016/j.cej.2005.03.021
  7. C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang, "Facet-Dependent catalytic activity of gold nanocubes, octahedral, and rhombic dodecahedra toward 4-nitroanlilne reduction", J. Phys. Chem. C, 116, 23757 (2012). https://doi.org/10.1021/jp307768h
  8. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic niro compounds by sodium borohydride in aqueous solution", Appl. Catal. A-Gen., 268, 61 (2004). https://doi.org/10.1016/j.apcata.2004.03.017
  9. W. Wu, G. Liu, S. Liang, Y. Chen, L. Shen, H. Zheng, R. Yuan, Y. How, and L. Wu, "Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline $PbBi_2Nb_2O_9$", J. Catal., 290, 13 (2012). https://doi.org/10.1016/j.jcat.2012.02.005
  10. W. Wu, L. Wen, L. Shen, R. Liang, R. Yuan, and L. Wu, "A new insight into the photocatalytic reduction of 4-nitroaniline to p-phenylenediamine in the presence of alcohols", Appl. Catal. B-Environ., 130, 163 (2013).
  11. W. Wu, S. Liang, Y. Chen, L. Shen, H. Zheng, and L. Wu, "High efficient photocatalytic reduction of 4-nitroaniline to p-phenylendiamine over microcrystalline $SrBi_2Nb_2O_9$", Catal. Commun., 17, 39 (2012). https://doi.org/10.1016/j.catcom.2011.10.012
  12. J. Davarpanah and A. R. Kiasat, "Catalytic application of silver nanoparticles immobilized to rice husk-$SiO_2$-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes", Catal. Commun., 41, 6 (2013). https://doi.org/10.1016/j.catcom.2013.06.020
  13. S. Honary, E. G. Fathabad, Z. K. Paji, and M. Eslamifar, "A novel biological synthesis of gold nanoparticle by enterobacteriaceae family", Trop. J. Pharm. Res., 6, 887 (2012).
  14. V. Reedy, R. S. Torati, S. Oh, and C. Kim, "Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi Gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline", Ind. Eng. Chem. Res., 52, 556 (2013). https://doi.org/10.1021/ie302037c
  15. S. Praharaj, S. Nath, S. K. Ghosh, C. Kundu, and T. Pal, "Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticles matrix as a catalyst for the reduction of 4-nitrophenol", Langmuir, 20, 9889 (2004). https://doi.org/10.1021/la0486281
  16. S. Kundu, S. Lan, and H. Liang, "Shape-controlled catalysis by cetyrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms", J. Phys. Chem. C, 113, 5150 (2009). https://doi.org/10.1021/jp811331z
  17. N. Pradhan, A. Pal, and T. Pal, "Silver nanoparticle catalyzed reduction of aromatic nitro compounds", Colloid. Surface. A, 196, 274 (2002).
  18. K. Hayakawa, T. Yoshimura, and K. Esumi, "Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol", Langmuir, 19, 5517 (2003). https://doi.org/10.1021/la034339l