DOI QR코드

DOI QR Code

저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls

  • 문주현 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 투고 : 2014.12.12
  • 심사 : 2015.08.24
  • 발행 : 2015.12.30

초록

철근콘크리트 전단벽의 전단강도를 예측하기 위한 기존 연구자들의 스트럿-타이 모델(STM)들은 횡하중 및 상부의 축력에 대한 전단벽의 내부 힘의 흐름과 웨브의 전단철근에 의해 전달되는 전단력의 비율을 명확히 제시하고 있지 않다. 이를 개선하기 위해서, 이 연구에서는 콘크리트 파괴역학의 균열 띠 이론을 기반한 단순한 STM을 개발하였다. 응력이완 스트립을 동반하는 콘크리트 스트럿의 등가유효너비는 중립축 깊이와 콘크리트 유효압축강도 계수로 결정되었다. 균열 띠 확장영역의 전단 전달 메커니즘은 강성법에 의한 트러스 작용으로부터 산정되었다. 웨브 콘크리트 스트럿과 전단철근에 의한 전단 전달력은 응력이완 스트립과 균열 띠 이론을 기반한 에너지평형조건으로부터 유도되었다. 제시된 모델은 Siao와 Hwang et al.의 STM에 비해 150여개의 기존 실험결과의 경향을 잘 예측하였다. 또한, 제시된 STM은 각 변수에 따른 무차원된 전단강도의 경향을 잘 반영하고 있다.

The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

키워드

참고문헌

  1. Park, R., and Paulay, T., "Reinforced Concrete Structures", Wiley Interscience Publication, New Jersey, USA, 1933, p.769.
  2. Siao, W. B., "Shear Strength of Short Reinforced Concrete Walls, Corbels, and Deep Beams", ACI Structural Journal, Vol.91, No.2, 1994, pp.123-132.
  3. Hwang, S. J., Fang, W. H., Lee, H. J., and Yu, H. W., "Analytical Model for Predicting Shear Strength of Squat Walls", Journal of Structural Engineering, ASCE, Vol.127, No.1, 2001, pp.43-50. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(43)
  4. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary", American Concrete Institute, Farmington Hills, MI, USA, 2011, p.503.
  5. Wood, S. L., "Shear Strength of Low-Rise Reinforced Concrete Walls, ACI Structural Journal, Vol.87, No.1, 1990, pp.99-107.
  6. Gulec, C. K., and Whittaker, A. S., "Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls", ACI Structural Journal, Vol.108, No.1, 2011, pp.80-89.
  7. Yang, K. H., "Development of Performance-Based Design Guideline for High-density Concrete Walls", Technical Report (2nd year). Kyonggi University, 2013, p.115 (in Korean).
  8. Mun, J. H., "Flexure and Shear Design Approach of High-Weight Concrete Shear Walls", Ph.D. Thesis, Architectural Engineering, Kyonggi University, South Korea, 2014 (in Korean).
  9. Bazant, Z. P., and Planas, J., "Fracture and Size Effect in Concrete and Other Quasibrittle Materials", CRC, New York, 1998.
  10. Schafer, K., "Strut-and-Tie Models for the Design of Structural Concrete, Notes of Workshop", Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, 1996.
  11. Zhang, L. X. B., and Hsu, T. T. C., "Behavior and Analysis of 100 MPa Concrete Member Membrane Elements," Journal of Structural Engineering, ASCE, Vol.124, No.1, 1998, pp.24-34. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:1(24)
  12. Yang, K. H., and Ashour, A. F., "Strut-and-Tie Model Based on Crack Band Theory for Deep Beams", Journal of Structural Engineering, ASCE, Vol.137, No.10, 2011, pp.1030-1038. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000351
  13. CEP-FIP Model Code 1990, "Design of Concrete Structures", Comite Euro-International du Beton, Thomas Telford Services Ltd, London, 1993.
  14. Marti, P., "Basic Tools of Reinforced Concrete Beam Design", ACI Journal, Vol.82, No.1, 1985, pp.46-56.
  15. Mun, J. H., and Yang, K. H., "Plastic Hinge Lengths Model for Reinforced Concrete Slender Shear Walls", Magazine of Concrete Research, Accepted, 2014.
  16. Sim, J. I., Yang, K. H., Lee, E. T., and Yi, S. T., "Effect of Aggregate and Specimen Sizes on Lightweight Concrete Fracture Energy", Journal of Materials in Civil Engineering, ASCE, Vol.26, No.5, 2014, pp.845-854. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000884
  17. Hirosawa, M., "Past Experimental Results on Reinforced Concrete Shear Walls and Analysis on Them", Kenchiku Kenkyu Shiryo No. 6, Building Research Institute, Ministry of Construction, 1975 (in Japanese).
  18. Tan, K. H., Kong, F. K., Teng, S., and Weng, L. W., "Effect of Web Reinforcement on High-Strength Concrete Deep Beams", ACI Structural Journal, Vol.94, No.5, 1997, pp.572-582.
  19. Maier, J., "Shear Wall Tests", Concrete Shear in Earthquake, University of Houston, 1992.
  20. Lefas, L. D., Kotsovos, M. D., and Ambraseys, N. N., "Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristics and Failure Mechanism", ACI Structural Journal, Vol.87, No.1, 1990, pp.23-31.
  21. Bazant, Z. P., and Sun, H. H., "Size Effect in Diagonal Shear Failure: Influence of Aggregate Size and Stirrups", ACI Materials Journal, Vol.84, No.4, 1987, pp.259-272.
  22. Wallace, J. W., "Behavior and Design of High-Strength RC Walls", ACI Special Publication, Vol.176, 1998, pp.259-279.
  23. Wasiewicz, Z. F., "Sliding Shear in Low-Rise Shear Wall under Lateral Load Reversals", M.S. Thesis, Department of Civil Engineering, Ottawa University, Canada, 1988.
  24. Yun, H. D., "Seismic Resistance of High Strength Reinforced Concrete Structural Walls", Ph.D. Thesis, Architectural Engineering, Hanyang University, South Korea, 1994 (in Korean).