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EXISTENCE OF SOLUTIONS FOR ELLIPTIC SYSTEM

WITH NONLINEARITIES UNDER THE DIRICHLET

BOUNDARY CONDITION

Hyewon Nam

Abstract. By linking theorem, we prove the existence of non-
trivial solutions for the elliptic system with jumping nonlinearity
and growth nonlinearity and Dirichlet boundary condition.

1. Introduction and main result

Presently there are many significant results with respect to the non-
linear elliptic equation and system with Dirichlet boundary condition
[2,6,8,9]. Many authors also investigated the nonlinear elliptic equation
and system with jumping nonlinearity and subcritical growth nonlinear-
ity and Dirichlet boundary condition [4, 5, 7].

In this paper, we consider the existence of nontrivial solutions to the
elliptic system −4u = au+ bv + δ1(u+)p1 − η1(u−) + f1(x, u, v) in Ω,

−4v = bu+ cv + δ2(v+)p2 − η2(v−) + f2(x, u, v) in Ω,
u = v = 0 on ∂Ω.

(1)

where u+ = max{0, u(x)}, u− = −min{0, u(x)} and Ω ⊂ RN be a
smooth bounded domain with N ≥ 2.
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The nonlinearities will be assumed both superlinear and subcritical,
that is, 1 < p1, p2 < 2∗ − 1, where 2∗ = 2N

N−2
if N ≥ 3 and 2∗ = ∞ if

N = 2.
And there exists a function F : Ω̄ × R2 → R such that ∂F

∂u
= f1 and

∂F
∂v

= f2 without loss of generality, we set

F (x, u, v) =

∫ (u,v)

(0,0)

f1(x, u, v)du+ f2(x, u, v)dv.

Then F ∈ C1(Ω̄×R2, R).
We consider the following assumptions.
(F1) There exist M > 0 and α > 2 such that

0 < αF (x, u, v) ≤ uFu(x, u, v) + vFv(x, u, v)

for all (x, u, v) ∈ Ω̄×R2 with u2 + v2 > M2.
(F2) There exist constants a1 > 0 and a2 > 0 such that

|Fu(x, u, v)|+ |Fv(x, u, v)| ≤ a1 + a2(|u|r + |v|r)

where 1 ≤ r < (N+2)
(N−2)

if N > 2 and 1 ≤ r <∞ if N = 2.

(F3) For (0, v)→ (0, 0),

F (x, 0, v)

v2
→ 0.

Remark 1.1. The condition (F1) shows that there exist constants
b1 > 0 and b2 such that(cf. [1] )

F (x, u, v) ≥ b1(|u|α + |v|α)− b2.

Our main result is the following.

Theorem 1.1. Assume F satisfies (F1), (F2) and (F3) with α = r+1.
If a, b, c, δ1, δ2, η1, and η2 are positive with a + b + η1 < λ1 and
b+ c+ η2 < λ1 then system (1) has at least two nontrivial solutions.

In this paper we prove the existence of two nontrivial solutions for
the elliptic system with jumping nonlinearity and growth nonlinearity
and Dirichlet boundary condition. In Section 2, we use a variational
approach to look for critical points of the functional I on a Hilbert
space H. In Section 3, we prove the Palais Smale star condition for the
linking theorem. And we prove the Lemmas in order to applyting the
linking theorem, so we prove Theorem 1.1.
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2. Preliminaries

Let H be a Hilbert space and V a C2 complete connected Finsler
manifold. Suppose H = H1⊕H2 and let Hn = H1n⊕H2n be a sequence
of closed subspaces of H such that

Hin ⊂ Hi, 1 ≤ dimHin < +∞ for each i = 1, 2 and n ∈ N

Moreover suppose that there exist e1 ∈ ∩∞n=1H1n, and e2 ∈ ∩∞n=1H2n,
with ‖e1‖ = ‖e2‖ = 1.

For any Y subspace of H, consider Bρ(Y ) := {u ∈ Y |‖u‖ ≤ ρ} and
denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Furthermore
define, for any e ∈ H,

QR(Y, e) := {u+ ae ∈ Y ⊕ [e]|u ∈ Y, a ≥ 0, ‖u+ ad‖ ≤ R}

and denote by ∂QR(Y, e) its boundary relative to Y ⊕ [e], and denote by
X = H × V .

We recall the two critical points theorem in [3].

Theorem 2.1. Suppose that f satisfies the (PS)∗ condition with
respect to Hn. In addition assume that there exist ρ, R, such that
0 < ρ < R and

sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f,

sup
QR(H2,e1)×V

f < +∞, inf
Bρ(H1)×V

f < −∞,

Then there exist at least 2 critical levels of f . Moreover the critical levels
satisfy the following inequalities

inf
Bρ(H1)×V

f ≤ c1 ≤ sup
∂QR(H2,e1)×V

f < inf
∂Bρ(H1)×V

f ≤ c2 ≤ sup
QR(H2,e1)×V

f,

and there exist at least 2 + 2 cuplength(V) critical points of f .

3. Main result

We will prove the existence of nontrivial solutions by using linking
theorem.
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3.1. The variational structure.

Throughout the paper, we will denote by λk the eigenvalues and by
ek the corresponding eigenfunctions, suitably normalized with respect to
L2(Ω) inner product, of the eigenvalue problem −∆u = λu in Ω, with
Dirichlet boundary condition, where each eigenvalue λk is respected as
often as its multiplicity. We recall that 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi →
+∞ and that e1 > 0 for all x ∈ Ω. Then H = span{ei|i ∈ N}, where
H = W 1,p

0 (Ω), the usual Sobolev space with the norm ‖u‖2 =
∫

Ω
|∇u|2dx.

Let e1
i = (ei, 0) and e2

i = (0, ei). We define Hj = span{eji |i ∈ N}, for
j = 1, 2 and E = H1 ⊕H2 with the norm ‖(u, v)‖2

E = ‖u‖2 + ‖v‖2.
We define the energy functional associated to (1) as

I(u, v) =
1

2

∫
Ω

(
|∇u|2 + |∇v|2

)
dx− 1

2

∫
Ω

(
au2 + 2buv + cv2

)
dx

−
∫

Ω

(
δ1

p1 + 1
(u+)p1+1 +

δ2

p2 + 1
(v+)p2+1

)
dx(2)

+

∫
Ω

(η1

2
(u−)2 +

η2

2
(v−)2

)
dx−

∫
Ω

F (x, u, v)dx

It is easy to see that I ∈ C1(E,R) and thus it makes sense to lock for
solutions to (1) in weak sense as critical points for I i.e. (u, v) ∈ E such
that I ′(u, v) = 0, where

I ′(u, v) · (φ, ψ) =

∫
Ω

(∇u∇φ+∇v∇ψ) dx

−
∫

Ω

(auφ+ bvφ+ buψ + cvψ) dx

−
∫

Ω

(
δ1(u+)p1φ+ δ2(v+)p2ψ

)
dx

+

∫
Ω

(
η1(u−)φ+ η2(v−)ψ

)
dx

−
∫

Ω

(f1(x, u, v)φ+ f2(x, u, v)ψ) dx.

3.2. The Palais Smale star condition.

In this section we will prove the (PS)∗c condition which was required
for the application of Theorem 2.1. In the following, we consider the
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following sequence of subspaces of E :

En = span{eji |i = 1, · · · , n and j = 1, 2}, for n ≥ 1.

Lemma 3.1. Assume F satisfies (F1) and (F2) with α = r + 1. If
a+ b+η1 < λ1 and b+c+η2 < λ1, then any (PS)∗c sequence is bounded.

Proof. Let {(un, vn)} ⊂ E be a sequence such that

(un, vn) ∈ En, I(un, vn)→ c, I ′(un, vn)→ 0 as n→∞.

To show the contradiction, we assume that {(un, vn)} is not bounded
i.e. ‖(un, vn)‖E →∞.

In the following we denote different constants by C1, C2 etc.

C1 +
1

2
o(1) (‖un‖+ ‖vn‖)

≥ I(un, vn)− 1

2
I ′(un, vn) · (un, vn)

=

∫
Ω

(
δ1(p1 − 1)

2(p1 + 1)
(un

+)p1+1 +
δ2(p2 − 1)

2(p2 + 1)
(vn

+)p2+1

)
dx(3)

+
1

2

∫
Ω

(unf1 + vnf2)dx−
∫

Ω

F (x, un, vn)dx.

(F1) and Remark imply that

1

2

∫
Ω

(unf1 + vnf2)dx −
∫

Ω

F (x, un, vn)dx

≥
(α

2
− 1
)∫

Ω

F (x, un, vn)dx

≥
(α

2
− 1
)
b1

∫
Ω

(|un|α + |vn|α)dx− C2(4)

≥
(α

2
− 1
)
b1(‖un‖αLα + ‖vn‖αLα)− C2.

Combining (3), (4), we obtain

C1 +
1

2
o(1) (‖un‖+ ‖vn‖)

≥
∫

Ω

(
δ1(p1 − 1)

2(p1 + 1)
(un

+)p1+1 +
δ2(p2 − 1)

2(p2 + 1)
(vn

+)p2+1

)
dx(5)

+
(α

2
− 1
)
b1(‖un‖αLα + ‖vn‖αLα)− C2
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Since α > 2 and b1 > 0, we get

δ1(p1 − 1)

2(p1 + 1)

∫
Ω

(un
+)p1+1dx +

δ2(p2 − 1)

2(p2 + 1)

∫
Ω

(vn
+)p2+1dx

≤ C3 +
1

2
o(1) (‖un‖+ ‖vn‖) .

By observing that each term in the expression above is nonnegative, we
conclude that the estimate from above holds for each of them, and then

1

‖(un, vn)‖E

∫
Ω

(un
+)p1+1dx→ 0,

1

‖(un, vn)‖E

∫
Ω

(vn
+)p2+1dx→ 0.(6)

On the other hand

o(1)‖un‖ ≥ I ′(un, vn) · (un, 0)

= ‖un‖2 −
∫

Ω

(aun
2 + bunvn)dx

−
∫

Ω

(
δ1(un

+)p1+1 − η1(un
−)2
)
dx−

∫
Ω

unf1(x, un, vn)dx,

o(1)‖vn‖ ≥ I ′(un, vn) · (0, vn)

= ‖vn‖2 −
∫

Ω

(bunvn + cvn
2)dx

−
∫

Ω

(
δ2(vn

+)p2+1 − η2(vn
−)2
)
dx−

∫
Ω

vnf2(x, un, vn)dx.

We know that

∫
Ω

(u−)2dx ≤
∫

Ω

u2dx ≤ 1

λ1

‖u‖2
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for any u ∈ H. Using (F2), we obtain

‖un‖2 + ‖vn‖2 ≤ o(1)(‖un‖+ ‖vn‖) +

∫
Ω

(aun
2 + 2bunvn + cvn

2)dx

+

∫
Ω

(
δ1(un

+)p1+1 + δ2(vn
+)p2+1

)
dx

−
∫

Ω

(
η1(un

−)2 + η2(vn
−)2
)
dx

+

∫
Ω

(unf1(x, un, vn) + vnf2(x, un, vn))dx(7)

≤ o(1)(‖un‖+ ‖vn‖) +
a+ b+ η1

λ1

‖un‖2 +
b+ c+ η2

λ1

‖vn‖2

+

∫
Ω

(
δ1(un

+)p1+1 + δ2(vn
+)p2+1

)
dx

+C4

∫
Ω

(|un|r+1 + |vn|r+1)dx+ C5.

(7) imply that if a+ b+ η1 < λ1 and b+ c+ η2 < λ1 then

‖un‖2 + ‖vn‖2 ≤ o(1)C6(‖un‖+ ‖vn‖)

+

∫
Ω

(
δ1(un

+)p1+1 + δ2(vn
+)p2+1

)
dx(8)

+C7

∫
Ω

(|un|r+1 + |vn|r+1)dx+ C8.

Combining (5), (8) and using α = r + 1, one infers that

‖un‖2 + ‖vn‖2 ≤ o(1)C8(‖un‖+ ‖vn‖) + C9

+C10

∫
Ω

(
δ1(un

+)p1+1 + δ2(vn
+)p2+1

)
dx.

We get

‖(un, vn)‖E ≤ o(1)C8(‖un‖+ ‖vn‖) + C9

‖(un, vn)‖E

+
C10

‖(un, vn)‖E

∫
Ω

(
δ1(un

+)p1+1 + δ2(vn
+)p2+1

)
dx→ 0

which, by using (6), imply that ‖(un, vn)‖E → 0 This gives rise to a
contradiction to the assumtion of {(un, vn)}. We conclude that {(un, vn)}
is bounded.
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Lemma 3.2. Assume F satisfies (F1) and (F2) with α = r + 1. If
a + b + η1 < λ1 and b + c + η2 < λ1, then the functional I satisfies the
(PS)∗c condition with respect to En.

Proof. By Lemma 3.1, any (PS)∗c sequence {(un, vn)} in E is bounded
and hence {(un, vn)} has a weakly convergent subsequence. That is
there exist a subsequence {(unj , vnj)} and (u, v) ∈ E, with unj ⇀ u and
vnj ⇀ v. Since {unj} and {vnj} are bounded, by Remark of Rellich-
Kondrachov compactness theorem [4], unj → u, vnj → v and thus I
satisfies (PS)∗c condition.

3.3. Proof of main theorem.

Lemma 3.3. Assume F satisfies (F3). If c < λ1, then there exists
ρ1 > 0 such that

inf
∂Bρ1 (H2)

I > 0.

Proof. By (F3), for any ε > 0, there exists ρ > 0 such that

0 < ‖v‖ < ρ ⇒ |F (x, 0, v)| < ε|v|2.
Then ∣∣∣∣∫

Ω

F (x, 0, v)dx

∣∣∣∣ < ∫
Ω

|F (x, 0, v)|dx <
∫

Ω

ε|v|2dx < ε

λ1

‖v‖2.

By the continuous embedding of H in Lp2+1, we get∫
Ω

(v+)p2+1

p2 + 1
dx ≤

∫
Ω

|v|p2+1

p2 + 1
dx ≤ β‖v‖p2+1,

where β is a positive constant.
and hence

I(0, v) =
1

2

∫
Ω

|∇v|2dx− c

2

∫
Ω

v2dx− δ2

p2 + 1

∫
Ω

(v+)p2+1dx

+
η2

2

∫
Ω

(v−)2dx−
∫

Ω

F (x, 0, v)dx

>
1

2
‖v‖2 − c

2λ1

‖v‖2 − βδ2‖v‖p2+1 − ε

λ1

‖v‖2

>
1

2

(
1− c+ 2ε

λ1

− 2βδ2ρ
p2−1

)
‖v‖2 > 0
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which gives the result for sufficiently small ε and ρ. Therefore we can
choose 0 < ρ1 < ρ such that I(0, v) > 0 for any ‖v‖ = ρ1.

Lemma 3.4. Assume F satisfies (F1). If a, b, c, δ1, δ2, η1, and η2 are
positive, then there exists an R > 0 such that for any R1 > R

sup
∂QR1

(H1,e21)

I < 0.

Proof. In the following we denote different constants by C1, C2 etc.
Remark 1.1 implies that

I(u, βe1) =
1

2

∫
Ω

|∇u|2dx+
λ1β

2

2
− a

2

∫
Ω

u2dx− bβ
∫

Ω

ue1dx−
cβ2

2

− δ1

p1 + 1

∫
Ω

(u+)p1+1dx− δ2

p2 + 1

∫
Ω

((βe1)+)p2+1dx

+
η1

2

∫
Ω

(u−)2dx+
η2

2

∫
Ω

((βe1)−)2dx−
∫

Ω

F (x, u, βe1)dx

≤ 1

2
‖u‖2 +

λ1β
2

2
− bβ

2
‖u‖2 − bβ

2

+
η1

2

∫
Ω

(u−)2dx+
η2

2

∫
Ω

((βe1)−)2dx−
∫

Ω

F (x, u, βe1)dx

≤ 1

2
‖u‖2 +

λ1β
2

2
− bβ

2
‖u‖2 − bβ

2
+

η1

2λ1

‖u‖2 +
η2β

2

2λ1

−b1

∫
Ω

(|u|α + |βe1|α)dx+ C1

≤ λ1 − bβλ1 + η1

2λ1

‖u‖2 +
(λ2

1 + η2)β2

2λ1

− bβ

2

−C2‖u‖α − C3|β|α + C4,

for any (u, 0) ∈ H1 and any constant β. Since α > 2, I(u, βe1) → −∞
for ‖u‖ → ∞ or |β| → ∞. Therefore we can choose 0 < R1 < ∞ such
that I(u, βe1) < 0 for any ‖(u, βe1)‖E = R1.

Proof of Theorem 1.1. By Lemma 3.3 and 3.4, there exists 0 < ρ1 <
R1 such that

sup
∂QR1

(H1,e21)

I < 0 < inf
∂Bρ1 (H2)

I.
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By Theorem 2.1, I(u, v) has at least two nonzero critical values c1, c2

inf
Bρ1 (H2)

I ≤ c1 ≤ sup
∂QR1

(H1,e21)

I < inf
∂Bρ1 (H2)

I ≤ c2 ≤ sup
QR1

(H1,e21)

I.

Therefore, (1) has at least two nontrivial solutions.
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