DOI QR코드

DOI QR Code

STUDIES ON BOUNDARY VALUE PROBLEMS FOR BILATERAL DIFFERENCE SYSTEMS WITH ONE-DIMENSIONAL LAPLACIANS

  • YANG, XIAOHUI (Department of Computers Guangdong Police College) ;
  • LIU, YUJI (Department of Mathematics and Statics Guangdong University of Finance and Economics)
  • Received : 2015.04.27
  • Accepted : 2015.12.01
  • Published : 2015.12.30

Abstract

Existence results for multiple positive solutions of two classes of boundary value problems for bilateral difference systems are established by using a fixed point theorem under convenient assumptions. It is the purpose of this paper to show that the approach to get positive solutions of boundary value problems of finite difference equations by using multi-fixed-point theorems can be extended to treat the bilateral difference systems with one-dimensional Laplacians. As an application, the sufficient conditions are established for finding multiple positive homoclinic solutions of a bilateral difference system. The methods used in this paper may be useful for numerical simulation. An example is presented to illustrate the main theorems. Further studies are proposed at the end of the paper.

Keywords

References

  1. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker Inc. 2000.
  2. R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, Second edition, Marcel Dekker, Inc, 2000.
  3. R. P. Agarwal, M. Bohner and D. O'Regan, Time scale boundary value problems on infinite intervals, J. Comput. Appl. Math. 141 (2002), 27-34. https://doi.org/10.1016/S0377-0427(01)00433-2
  4. R. P. Agarwal and D. O'Regan, Cone compression and expansion and fixed point theorems in Frchet spaces with application, J. Differ. Equ. 171 (2001), 412-422. https://doi.org/10.1006/jdeq.2000.3831
  5. R. P. Agarwal and D. O'Regan, Nonlinear Urysohn discrete equations on the infinite interval: a fixed-point approach, Comput. Math. Appl. 42 (2001), 273-281. https://doi.org/10.1016/S0898-1221(01)00152-3
  6. R. P. Agarwal and D. O'Regan, Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl. 33 (1997), 85-99. https://doi.org/10.1016/S0898-1221(97)00044-8
  7. R. P. Agarwal and D. O'Regan, Discrete systems on infinite intervals, Comput. Math. Appl. 35 (1998) 97-105. https://doi.org/10.1016/S0898-1221(98)00061-3
  8. R. P. Agarwal, K. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal. 58 (2004), 69-73. https://doi.org/10.1016/j.na.2003.11.012
  9. R. I. Avery, A generalization of Leggett-Williams fixed point theorem, Math. Sci. Res. Hot Line 3 (1993), 9-14.
  10. R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (2001), 313-322. https://doi.org/10.1016/S0898-1221(01)00156-0
  11. P. Chen, Existence of homoclinic orbits in discrete Hamiltonian systems without Palais-Smale condition, J. Differ. Equ. Appl. 19(11) (2013), 1781-1794. https://doi.org/10.1080/10236198.2013.777716
  12. A. Cabada and J. Cid, Solvability of some p-Laplacian singular difference equations defined on the integers, ASJE-Mathematics. 34 (2009), 75-81.
  13. A. Cabada and S. Tersian, Existence of heteroclinic solutions for discrete p-Laplacian problems with a parameter, Nonlinear Anal. RWA. 12 (2011), 2429-2434. https://doi.org/10.1016/j.nonrwa.2011.02.022
  14. A. Cabada, A. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl. 356 (2009), 418-428. https://doi.org/10.1016/j.jmaa.2009.02.038
  15. A. Cabada, L. Li and S. Tersian, On Homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients, Adv. Differ. Equ. 2010 (2010), Article ID 195376, 17 pages.
  16. X. Cai, Z. Guo and J. Yu, Periodic solutions of a class of nonlinear diffrence equations via critical point method, Comput. Math. Appl. 52 (2006), 1639-1647. https://doi.org/10.1016/j.camwa.2006.09.003
  17. P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the p-Laplacian, Comput. Math. Appl. 56 (2008), 959-964. https://doi.org/10.1016/j.camwa.2008.01.025
  18. W. Cheung, J. Ren, P. J. Y. Wong and D. Zhao, Multiple positive solutions for discrete nonlocal boundary value problems, J. Math. Anal. Appl. 330 (2007), 900-915. https://doi.org/10.1016/j.jmaa.2006.08.034
  19. P. Chen and X. Tang, Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations, Adv. Differ. Equ. 2010 (2010), Article ID 470375, 19 pages.
  20. E. M. Elsayed, Solutions of rational difference system of order two, Math. Comput. Modelling, 55 (2012), 378-384. https://doi.org/10.1016/j.mcm.2011.08.012
  21. E. M. Elsayed, Behavior and expression of the solutions of some rational difference equations, J. Comput. Anal. Appl. 15 (1) (2013), 73-81.
  22. E. M. Elsayed, Solution for systems of difference equations of rational form of order two, Comput. Appl. Math. 33(3) (2014), 751-765. https://doi.org/10.1007/s40314-013-0092-9
  23. F. Faraci and A. Iannizzotto, Multiplicity theorems for discrete boundary value problems, Aequationes Math. 74 (2007), 111-118. https://doi.org/10.1007/s00010-006-2855-5
  24. J. R. Graef, L. Kong and B. Yang, Positive solutions for third order multi-point singular boundary value problems, Czechoslovak Math. J. 60 (2010), 173-182. https://doi.org/10.1007/s10587-010-0007-5
  25. Z. Guo and J. Yu, Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal. 55 (2003), 969-983. https://doi.org/10.1016/j.na.2003.07.019
  26. Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. Lond. Math. Soc. 68 (2003), 419-430. https://doi.org/10.1112/S0024610703004563
  27. X. He and P. Hen, Homoclinic solutions for second order discrete p-Laplacian systems, Adv. Differ. Equ. 57 (2011), 20 pages.
  28. J. Henderson and R. Luca, Existence of positive solutions for a system of second-order multi-point discrete boundary value problems, J. Differ. Equ. Appl. 19 (11) (2013), 1889-1906. https://doi.org/10.1080/10236198.2013.788646
  29. L. Jodar and R. J. Villanueva, Explicit solutions of implicit second-order difference systems in unbounded bilateral domains, Comput. Math. Appl. 32 (9) (1996), 19-28. https://doi.org/10.1016/0898-1221(96)00173-3
  30. L. Jiang and Z. Zhou, Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations, Adv. Differ. Equ. 2008 (2008), Article ID 345916, 10 pages.
  31. L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput. 247 (15) (2014), 1113-1121. https://doi.org/10.1016/j.amc.2014.09.069
  32. A. R. Kanth and Y. Reddy, A numerical method for solving two point boundary value problems over infinite intervals, Appl. Math. Comput. 144 (2003), 483-494. https://doi.org/10.1016/S0096-3003(02)00422-8
  33. W. G. Kelley and A. Peterson, Difference equations, Harcourt/Academic Press. 2001.
  34. V. Lakshmikantham and D. Trigiante, Theory of difference equations: numerical methods and applications, Marcel Dekker Inc. 2002.
  35. Y. Liu, Positive Solutions of BVPs for finite Difference Equations with One-Dimensional p-Laplacian, Commun. Math. Anal. 4 (2008), 58-77.
  36. Y. Long, Homoclinic solutions of some second-order nonperiodic discrete systems, Adv. Differ. Equ. 64 (2011), 1-12.
  37. Y. Liu and S. Chen, Multiple Heteroclinic solutions of bilateral difference systems with Laplacian operators, Math. Sci. 126 (8) (2014), 13 pages.
  38. Y. Liu and W. Ge, Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl. 278 (2003), 551-561. https://doi.org/10.1016/S0022-247X(03)00018-0
  39. Y. Li and L. Lu, Existence of positive solutions of p-Laplacian difference equations, Appl. Math. Letters 19 (2006), 1019-1023. https://doi.org/10.1016/j.aml.2005.10.020
  40. Y. Long and H. Shi, Multiple slutions for the discrete-Laplacian boundary value problems, Disc. Dyn. Nature Soc. 2014 (2014), Article ID 213702, 6 pages.
  41. Y. Li and L. Zhu, Existence of periodic solutions discrete Lotka-Volterra systems with delays, Bull. of Inst. of Math. Academia Sinica 33 (4) (2005), 369-380.
  42. X. Liu, Y. Zhang and H. Shi, Periodic solutions for fourth-order nonlinear functional difference equations, Math. Meth. Appl. Sci. 38 (1) (2015), 1-10. https://doi.org/10.1002/mma.3045
  43. X. Liu, Y. Zhang and H. Shi, Homoclinic orbits of second order nonlinear functional difference equations with Jacobi operators, Indagationes Math. 26 (1) (2015), 75-87. https://doi.org/10.1016/j.indag.2014.06.002
  44. X. Liu, Y. Zhang and H. Shi, Nonexistence and existence results for a class of fourth-order difference Neumann boundary value problems, Indagationes Math. 26 (1) (2015), 293-305. https://doi.org/10.1016/j.indag.2014.05.001
  45. X. Liu, Y. Zhang and H. Shi, Periodic and subharmonic solutions for fourth-order nonlinear difference equations, Appl. Math. Comput. 236 (2014), 613-620. https://doi.org/10.1016/j.amc.2014.03.086
  46. X. Liu, Y. Zhang and H. Shi, Nonexistence and existence results for a class of fourth-order difference Dirichlet boundary value problems, Math. Meth. Appl. Sci. 38 (4) (2015), 691-700. https://doi.org/10.1002/mma.3100
  47. X. Liu, Y. Zhang and H. Shi, Existence of Periodic Solutions for a 2nth-Order Difference Equation Involving p-Laplacian, Bull. Malaysian Math. Sci. Soc. 38 (3) (2015), 1107-1125. https://doi.org/10.1007/s40840-014-0066-0
  48. X. Liu, Y. Zhang and H. Shi, Existence and nonexistence results for a fourth-order discrete neumann boundary value problem, Studia Sci. Math. Hungarica, 51 (2) (2014), 186-200. https://doi.org/10.1556/SScMath.51.2014.2.1275
  49. X. Liu, Y. Zhang and H. Shi, Existence of periodic solutions for a class of nonlinear difference equations, Qual. Theory Dyn. Syst. 14 (1) (2015), 51-69. https://doi.org/10.1007/s12346-014-0125-9
  50. X. Liu, Y. Zhang and H. Shi, Nonexistence and existence of solutions for a fourth-order discrete mixed boundary value problem, Proceedings-Math. Sci. 124 (2) (2014), 179-191. https://doi.org/10.1007/s12044-014-0176-5
  51. X. Liu, Y. Zhang and H. Shi, Nonexistence and existence results for a 2nth-order discrete mixed boundary value problem, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 109 (2) (2015), 303-314. https://doi.org/10.1007/s13398-014-0182-6
  52. R. Ma and I. Raffoul, Positive solutions of three-point nonlinear discrete second order boundary value problem, J. Differ. Eqns. Appl. 10 (2004), 129-138. https://doi.org/10.1080/1023619031000114323
  53. M. Mihuailescu, V. Radulescu and S. Tersian, Homoclinic solutions of difference equations with variable exponents, Topological Meth. Nonl. Anal. Journal of the Juliusz Schauder University Centre, 38 (2011), 277-289.
  54. M. Mihailescu, V. Radulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl. 15 (2009), 557-567. https://doi.org/10.1080/10236190802214977
  55. H. Pang, H. Feng and W. Ge, Multiple positive solutions of quasi-linear boundary value problems for finite difference equations, Appl. Math. Comput. 197 (2008), 451-456. https://doi.org/10.1016/j.amc.2007.06.027
  56. L. Rachunek and I. Rachunkoa, Homoclinic solutions of non-autonomous dif- ference equations arising in hydrodynamics, Nonlinear Anal. RWA. 12 (2011), 14-23. https://doi.org/10.1016/j.nonrwa.2010.05.031
  57. B. Ricceri, A multiplicity theorem in $R^n$, J. Convex Anal. 16 (2009), 987-992.
  58. H. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput. 48 (1-2) (2014), 1-15. https://doi.org/10.1007/s12190-014-0788-z
  59. H. Shi, X. Liu and Y. Zhang, Nonexistence and existence results for a 2nth-order discrete Dirichlet boundary value problem, Kodai Math. J. 37 (2) (2014), 492-505. https://doi.org/10.2996/kmj/1404393901
  60. H. Shi, X. Liu and Y. Zhang, Homoclinic orbits for second order p-Laplacian difference equations containing both advance and retardation, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, DOI 10.1007/s13398-015-0221-y, 2015: 1-14.
  61. H. Shi, X. Liu, Y. Zhang and X. Deng, Existence of periodic solutions of fourth-order nonlinear difference equations, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 108 (2) (2014), 811-825. https://doi.org/10.1007/s13398-013-0143-5
  62. Y. Tian and W. Ge, Multiple positive solutions of boundary value problems for second-order discrete equations on the half-line, J. Differ. Eqns. Appl. 12 (2006),191-208. https://doi.org/10.1080/10236190500539329
  63. P. J. Y. Wong and L. Xie, Three symmetric solutions of lidstone boundary value problems for difference and partial difference equations, Comput. Math. Appl. 45 (2003), 1445-1460. https://doi.org/10.1016/S0898-1221(03)00102-0
  64. J. Yu and Z. Guo, On generalized discrete boundary value problems of Emden-Fowler equation, Sci. China Math. 36 (2006), 721-732.
  65. Q. Zhang, Existence of homoclinic solutions for a class of difference systems involving p-Laplacian, Adv. Differ. Equ. 291 (2014), 1-14.
  66. Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math. 54 (2011), 83-93. https://doi.org/10.1007/s11425-010-4101-9