DOI QR코드

DOI QR Code

Comparison of quantitative detection of periodontal pathogens before and after scaling by real-time polymerase chain reaction

  • Kim, Young-Sun (Department of Dental Hygiene, Daegu Health College) ;
  • Lee, Jung-Hwa (Department of Dental Hygiene, Daegu Health College) ;
  • Lee, Young-Eun (Department of Dental Hygiene, Daegu Health College)
  • Received : 2015.09.17
  • Accepted : 2015.12.22
  • Published : 2015.12.30

Abstract

Objectives: The purpose of the study is to investigate the quantitative detection of periodontal pathogens before and after scaling by real-time polymerase chain reaction. Methods: Participants were voluntarily recruited at D university, and saliva samples were extracted before and after scaling. Multiple real-time polymerase chain reactions were used to analyze characteristics and the amount of nine kinds of periodontal pathogens; Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum, Parvimonas micra, Campylobacter rectus, and Eikenella corrodens. Results: After scaling, most periodontal pathogens except Eikenella corrodens were significantly decreased in all subjects(p<0.05). In addition, the percentage of microorganisms associated with disease, the microorganism risk index of periodontitis and the prevalence of red complex, orange complex, and Aggregatibacter actinomycetemcomitans was also significantly reduced after scaling(p<0.05). Conclusions: Scaling decreased in the amount of major periodontal pathogens and periodontitis prevalence rate.

Keywords

References

  1. YJ Jung, MH Cho, DH Moon. Influencing factors to dental caries and periodontal diseases. J Korean Soc Dent Hyg 2015; 15: 47-54. https://doi.org/10.13065/jksdh.2015.15.01.47
  2. Mohangi GU, Singh-Rambirich S, Volchansky A. Periodontal disease: mechanisms of infection and inflammation and possible impact on miscellaneous systemic diseases and conditions. SADJ 2013; 68: 462, 464-7.
  3. van Houte J. Role of micro-organisms in caries etiology. J Dent Res 1994; 73: 672-81. https://doi.org/10.1177/00220345940730031301
  4. Petersen PE, Estupinan-Day S, Ndiaye C. WHO's action for continuous improvement in oral health. Bull World Health Organ 2005; 83: 642.
  5. Lopez R, Hujoel P, Belibasakis GN. On putative periodontal pathogens: an epidemiological perspective. Virulence 2015; 6: 249-57. http://dx.doi.org/10.1080/21505594.2015.1014266.
  6. Theilade E. Advances in oral microbiology. Ann R Australas Coll Dent Surg 1989; 10: 62-71.
  7. Marchesan J, Jiao YZ, Schaff RA, Hao J, Morelli T, Kinney JS, et al. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens. Mol Oral Microbiol 2015 [Epub ahead of print]. http://dx.doi.org/10. 1111/omi.12116.
  8. Salminen A, Kopra KA, Hyvarinen K, Paju S, Mantyla P, Buhlin K, et al. Quantitative PCR analysis of salivary pathogen burden in periodontitis. Front Cell Infect Microbiol 2015; 5: 69. http://dx.doi.org/10.3389/fcimb.2015.00069.
  9. Chahboun H, Arnau MM, Herrera D, Sanz M, Ennibi OK. Bacterial profile of aggressive periodontitis in Morocco: a cross-sectional study. BMC Oral Health 2015; 15: 25. http://dx.doi.org/10.1186/s12903-015-0006-x.
  10. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25: 134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  11. Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol 2000; 27: 722-32. https://doi.org/10.1034/j.1600-051x.2000.027010722.x
  12. Haubek D, Ennibi OK, Poulsen K, Benzarti N, Baelum V. The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans and progression of periodontal attachment loss. J Dent Res 2004; 83: 767-70. https://doi.org/10.1177/154405910408301006
  13. Arabaci T, Cicek Y, Canakci CF. Sonic and ultrasonic scalers in periodontal treatment: a review. Int J Dent Hyg 2007; 5: 2-12. https://doi.org/10.1111/j.1601-5037.2007.00217.x
  14. Petersilka GJ, Ehmke B, Flemmig TF. Antimicrobial effects of mechanical debridement. Periodontol 2000 2002; 28: 56-71. https://doi.org/10.1034/j.1600-0757.2002.280103.x
  15. Darby I. Non-surgical management of periodontal disease. Aust Dent J 2009; 54: S86-95. http://dx.doi.org/10.1111/j.1834-7819.2009.01146.x.
  16. Cobb CM. Clinical significance of non-surgical periodontal therapy: an evidence-based perspective of scaling and root planing. J Clin Periodontol 2002; 29: 6-16.
  17. Faveri M, Gursky LC, Feres M, Shibli JA, Salvador SL, de Figueiredo LC. Scaling and root planing and chlorhexidine mouthrinses in the treatment of chronic periodontitis: a randomized, placebo-controlled clinical trial. J Clin Periodontol 2006; 33: 819-28. https://doi.org/10.1111/j.1600-051X.2006.00994.x
  18. Heitz-Mayfield LJ, Trombelli L, Heitz F, Needleman I, Moles D. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J Clin Periodontol 2002; 29: 92-102.
  19. Haffajee AD, Cugini MA, Dibart S, Smith C, Kent RL Jr, Socransky SS. Clinical and microbiological features of subjects with adult periodontitis who responded poorly to scaling and root planing. J Clin Periodontol 1997; 24: 767-76. https://doi.org/10.1111/j.1600-051X.1997.tb00195.x
  20. Knofler GU, Purschwitz RE, Eick S, Pfister W, Roedel M, Jentsch HF. Microbiologic findings 1 year after partialand full-mouth scaling in the treatment of moderate chronic periodontitis. Quintessence Int 2011; 42: e107-17.
  21. Yang H, Xu Y, Zhao L, Meng S, Wu YF. Association between Porphyromonas gingivalis and scaling and root planning therapy. Hua Xi Kou Qiang Yi Xue Za Zhi 2008; 26: 147-51.
  22. Braga RR, Carvalho MA, Bruna-Romero O, Teixeira RE, Costa JE, Mendes EN, et al. Quantification of five putative periodontal pathogens in female patients with and without chronic periodontitis by real-time polymerase chain reaction. Anaerobe 2010; 16: 234-9. http://dx.doi.org/10.1016/j.anaerobe.2010.02.007.
  23. Salminen A, Kopra KA, Hyvarinen K, Paju S, Mantyla P, Buhlin K, et al. Quantitative PCR analysis of salivary pathogen burden in periodontitis. Front Cell Infect Microbiol 2015; 5: 69. http://dx.doi.org/10.3389/fcimb.2015.00069.
  24. Kim SM, Yang KH, Choi NK, Kang MS, Oh JS. Quantitative detection of periodontopathic bacteria using real-time PCR. J Korean Acad Pediatr Dent 2008; 35: 494-503.
  25. Lee MR, Kim MJ. A study on the change of oral microorganism before and after oral hygiene management. Korea Academy of Mental Health Social Work 2011; 13: 51-65.
  26. Cho HB. Multiplex real-time PCR for simultaneous detection of 6 periodontopathic bacteria. Korean J Microbiology 2013; 49: 292-6. https://doi.org/10.7845/kjm.2013.3063
  27. Geneall Biotechnology. DNA purification handbook. Geneall biotechnology; 2012: 11-38.
  28. Kononen E, Paju S, Pussinen PJ, Hyvonen M, Di Tella P, Suominen-Taipale L, et al. Population-based study of salivary carriage of periodontal pathogens in adults. J Clin Microbiol 2007; 45: 2446-51. http://dx.doi.org/10.1128/jcm.02560-06.
  29. Kim MK, Seong JH, Kim DK, Son YN, Lee JJ, Shin YK, et al. Comparison of detection rate of Prevotella intermedia and Prevotella nigrescens in subgingival plaque from Korean periodontitis patients. J Korean Acad Oral Health 2004; 28: 279-84.

Cited by

  1. Oral health condition according to distribution of periodontopathic bacterial complex vol.44, pp.1, 2015, https://doi.org/10.11149/jkaoh.2020.44.1.41