DOI QR코드

DOI QR Code

Effect of Hydrocolloids on Physicochemical Properties of Bread Flour Dough with Rice Flour

Hydrocolloids가 쌀을 첨가한 빵용 밀가루 반죽의 물성학적 특성에 미치는 영향

  • Kim, Yang-Hoon (Department of BioFood Sci. & Technol., Agrc. Livestock Graduate School, Konkuk University) ;
  • Lee, Jeong-Hoon (Department of Bioresources and Food Science, Konkuk University) ;
  • Chung, Koo Chun (Department of Chemistry, Konkuk University) ;
  • Lee, Si-Kyung (Department of Bioresources and Food Science, Konkuk University)
  • 김양훈 (건국대학교 농축대학원 바이오식품공학과) ;
  • 이정훈 (건국대학교 생명자원 식품공학과) ;
  • 정구춘 (건국대학교 화학과) ;
  • 이시경 (건국대학교 생명자원 식품공학과)
  • Received : 2015.09.01
  • Accepted : 2015.10.20
  • Published : 2015.12.31

Abstract

This study was carried out to investigate the effect of hydrocolloids [hydroxypropylmethyl cellulose (HPMC), xanthan gum (XG), guar gum (GG), and glucomannan (GM)] on the physicochemical properties of bread flour dough containing rice flour. In amylograph analysis, the significantly lowest gelatinization temperature was obtained in dough with XG (P<0.05). XG revealed the highest maximum viscosity while GM revealed the lowest. In viscograph test, the lowest gelatinization temperature and maximum viscosity showed the same result as in the amylograph. Breakdown value was also highest in dough containing XG, but lowest in the control and dough containing HPMC. Setback value was highest in dough containing HPMC, but lowest in dough containing XG. In farinograph analysis, consistency was greatest in dough with HPMC and XG. Hydrocolloids affected water absorption, which was highest in dough containing GM. Development times of dough containing HPMC and XG were low. Stability was lowest in dough with XG. Degree of softening was reduced in dough containing HPMC and GG compared to the control but increased in dough containing XG and GM. Dough containing HPMC and GG showed the largest volume at 3 h of fermentation. Dough with HPMC showed the lowest pH value. Hydrocolloids in this study affected physicochemical properties of dough.

강력분 80%와 쌀가루 20%를 혼합한 후 검류로 HPMC, xanthan gum, guar gum, glucomannan 등을 각각 1% 첨가하여 반죽의 물성학적 특성을 분석하였다. 혼합분의 Amylograph 분석에서 호화온도는 xanthan gum 첨가구가 가장 낮았으며 유의적 차이가 있었다(P<0.05). 최고점도 온도도 같은 경향을 나타냈으며, 최고점도는 xanthan gum 첨가구가 가장 높았고 glucomannan 첨가구가 가장 낮았으며 유의적 차이가 있었다. Viscograph 분석에서 호화개시온도와 최고점도는 Amylograph 결과와 일치하였으며, 유지온도와 냉각온도에서의 점도는 xanthan gum 첨가구가 가장 높았다. Breakdown은 xanthan gum 첨가구의 값이 가장 높았고 대조구와 HPMC 첨가구가 가장 낮았으며, setback은 HPMC 첨가구가 가장 높았고 xanthan gum 첨가구가 가장 낮았다. Farinograph에서 반죽의 되기는 HPMC 및 xanthan gum 첨가구가 유의적으로 높았으며, 흡수율은 glucomannan 첨가구가 가장 높았다. 반죽형성시간은 대조구에 비하여 guar gum 첨가구가 길었다. 안정도는 대조구에 비하여 HPMC와 guar gum 첨가구는 유의적 차이가 없었으나 xanthan gum 첨가구는 훨씬 짧아져 유의적 차이가 있었다(P<0.05). 약화도는 대조구에 비하여 HPMC와 guar gum 첨가구는 짧아졌으나 xanthan gum과 glucomannan 첨가구는 길어졌다. FQN은 HPMC와 guar gum 첨가구가 대조구에 비해 높았다. 반죽의 발효부피 분석에서 guar gum과 HPMC 첨가구의 부피가 컸고, 반죽의 pH는 HPMC 첨가구가 가장 낮았다. 이상의 실험으로 hydrocolloids가 밀가루와 쌀가루 혼합분의 paste, 반죽, 발효부피, 반죽의 pH 등에 영향을 주었다.

Keywords

References

  1. Lee JH, Yun MS, Book JH, Park DK, Son DH, Woo HS, Lee GJ, Jo HL. 2012. Practical bread & cake. Jigumoonwhasa, Seoul, Korea. p 34.
  2. Kim HY, Lee IS, Kang JY, Kim GY. 2002. Quality characteristics of cookies with various levels of functional rice flour. Korean J Food Sci Technol 34: 642-646.
  3. Lumdubwong N, Seib PA. 2000. Rice starch isolation by alkaline protease digestion of wet-milled rice flour. J Cereal Sci 31: 63-74. https://doi.org/10.1006/jcrs.1999.0279
  4. Hartsook ET. 1984. Celiac sprue: Sensitivity to gliadin. Cereal Foods World 29: 157-158.
  5. Farrell RJ, Kelly CP. 2002. Celiac sprue. N Eng J Med 346: 180-188. https://doi.org/10.1056/NEJMra010852
  6. Kadan RS, Robinson MG, Thibodeaux DP, Pepperman Jr AB. 2001. Texture and other physicochemical properties of whole rice bread. J Food Sci 66: 940-944. https://doi.org/10.1111/j.1365-2621.2001.tb08216.x
  7. Gallagher E, Gormley TR, Arendt EK. 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Sci Technol 15: 143-152. https://doi.org/10.1016/j.tifs.2003.09.012
  8. Reyes Aguilar MJ, Palomo P, Bressani R. 2004. Development of bakery products for greater adult consumption based on wheat and rice flour. Arch Latinoam Nutr 54: 314-321.
  9. Arisaka M, Nakamura K, Yoshii Y. 1992. Properties of rice flour prepared by different milling methods. Denpun Kagaku 39: 155-163.
  10. Touno M. 2005. Flour composite and foodstuff with bubbles prepared from the said flours. Japanese Patent 2005-3110.
  11. Nishita KD, Roberts RL, Bean MM, Kennedy BM. 1976. Development of a yeast-leavened rice-based formula. Cereal Chem 53: 626-634.
  12. AACC. 1985. Approved methods of AACC. American Association of Cereal Chemists, St. Paul, MN, USA. Methods 22-10, 61-01, 54-21, 02-52.
  13. Chaisawang M, Suphantharika M. 2005. Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch. Carbohydr Polym 61: 288-295. https://doi.org/10.1016/j.carbpol.2005.04.002
  14. Yoshimura M, Takaya T, Nishinari K. 1998. Rheological studies on mixtures of corn starch and konjac-glucomannan. Carbohydr Polym 35: 71-79. https://doi.org/10.1016/S0144-8617(97)00232-4
  15. Annable P, Fitton MG, Harris B, Phillips GO, Williams PA. 1994. Phase behavior and rheology of mixed polymer systems containing starch. Food Hydrocolloids 8: 351-359. https://doi.org/10.1016/S0268-005X(09)80347-0
  16. Closs CB, Conde-Petit B, Roberts ID, Tolstoguzov VB, Escher F. 1999. Phase separation and rheology of aqueous starch/galactomannan systems. Carbohydr Polym 39: 67-77. https://doi.org/10.1016/S0144-8617(98)00048-4
  17. Sidhu JPS, Bawa AS. 2002. Dough characteristics and baking studies of wheat flour fortified with xanthan gum. Int J Food Prop 5: 1-11. https://doi.org/10.1081/JFP-120015588
  18. Simsek S. 2009. Application of xanthan gum for reducing syruping in refrigerated doughs. Food Hydrocolloids 23: 2354-2358. https://doi.org/10.1016/j.foodhyd.2009.06.017
  19. Charoenrein S, Tatirat O, Rengsutthi K, Thongngam M. 2011. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydr Polym 83: 291-296. https://doi.org/10.1016/j.carbpol.2010.07.056
  20. Funami T, Kataoka Y, Omoto T, Goto Y, Asai I, Nishinari K. 2005. Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocolloids 19: 1-13. https://doi.org/10.1016/j.foodhyd.2004.04.024
  21. Rojas JA, Rosell CM, de Barber CB. 1999. Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocolloids 13: 27-33. https://doi.org/10.1016/S0268-005X(98)00066-6
  22. Rosell CM, Collar C, Haros M. 2007. Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids 21: 452-462. https://doi.org/10.1016/j.foodhyd.2006.05.004
  23. Anjum FM, Sabir MZ, Khan MI, Pasha I. 2010. Sugar utilization behavior of yeast (Saccharomyces cerevisae) types and doses on bread quality. Nutr Food Sci 40: 395-402. https://doi.org/10.1108/00346651011062041
  24. Elmehdi HM, Page JH, Scanlon MG. 2003. Monitoring dough fermentation using acoustic waves. Food Bioprod Process 81: 217-223. https://doi.org/10.1205/096030803322437983
  25. Holmes JT, Hoseney RC. 1987. Chemical leavening: Effect of pH and certain ions on breadmaking properties. Cereal Chem 64: 343-348.
  26. Ronald HZ. 1992. Bread lecture. American Institute of Baking Printing Ltd., Manhattan, KS, USA. p 1714.
  27. Kulp K, Chung H, Martinez-Anaya MA, Doerry W. 1985. Fermentation of water ferments and bread quality. Cereal Chem 62: 55-59.
  28. Lee JH, Yun MS, Bog JH, An HG, U HS, Lee GJ. 2011. New science of bread & cake. Jigumoonwhasa, Seoul, Korea. p 143,255.
  29. Nishita KD, Bean MM. 1979. Physicochemical properties of rice in relation to rice bread. Cereal Chem 56: 185-189.
  30. Lee SW, Kim HS, Kim YK, Baek HH, Park HJ. 2010. Application of HPMC for the food industry. Food Sci Ind 43: 55-63.

Cited by

  1. Effects of Hydrocolloids on Quality Characteristics of Bread with Rice Flour vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1324