References
- Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. (2003). A neural probabilistic language model, Journal of Machine Learning Research, Vol. 3, 1137-1155.
- Bengio, Y. (2009). Learning deep architectures for AI, Journal of Foundations and Trends in Machine Learning, Vol. 2, No. 1, 1-127. https://doi.org/10.1561/2200000006
- Schwenk, H. & Gauvain, J. (2005). Training neural network language models on very large corpora, in Proc. Empirical Methods in Natural Language Processing, 201-208.
- Arisoy, E., Sainath, T., Kingsbury, B. and Ramabhadran, B. (2012). Deep neural network language models, in Proc. NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, 20-28.
- Turney, P. & Pantel, P. (2010) From frequency to meaning: vector space models of semantics, Journal of Artificial Intelligence Research, Vol. 37, No. 1, 141-188. https://doi.org/10.1613/jair.2934
- Schutze, H. & Pedersen, J. (1995). Information retrieval based on word sense, in Proc. Symposium on Document Analysis and Information Retrieval, 161-175.
- Rubenstein, H. & Goodenough, J. (1965) Contextual correlates of synonymy, Communications of the ACM, Vol. 8, No. 10, 627-633. https://doi.org/10.1145/365628.365657
- Bruni, E., Boleda, G., Baroni, M. and Tran, N. (2012). Distributional semantics in technicolor, in Proc. 50th Annual Meeting of the Associations for Computational Linguistics, 136-145.
- Mikolov, T. (2013). Word2Vec, https://code.google.com/p/word2vec.
- Faruqui, M. & Dyer, C. (2014). Community evaluation and exchange of word vectors at wordvectors.org, in Proc. Associations for Computational Linguistics, 1-6.
- Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G. and Ruppin, E. (2001). Placing search in context: the concept revisited, in Proc. The Tenth International World Wide Web Conference, 406-414.
- Bruni, E., Boleda, G., Baroni, M. and Tran, N. (2012). Distributional semantics in technicolor, in Proc. 50th Annual Meeting of the Associations for Computational Linguistics, 136-145.
- Luong, M., Socher, R. and Manning, C. (2013). Better word representations with recursive neural networks for morphology, in Proc. Computational Natural Language Learning, 1-10.