DOI QR코드

DOI QR Code

Preparation of High Purity Galacto-Oligosaccharide and Its Prebiotic Activity In Vitro Evaluation

고순도 Galactooligosaccharide 제조 및 유산균 증식 활성

  • Received : 2015.12.01
  • Accepted : 2015.12.14
  • Published : 2015.12.31

Abstract

This study attempted to find an efficient method for the preparation of high-purity galactooligosaccharides (HP-GOS) using ${\beta}$-galactosidase and yeast fermentation. GOS prepared using Lactozym 3000L showed the greatest enhancement in total GOS of the six ${\beta}$-galatosidases tested. GOS alone achieved 51% conversion of initial lactose. GOS production was enhanced by fermentation with commercial yeast (Saccharomyces cerevisiae); its concentration reached 71% after 36h fermentation with 8% yeast. Component sugar analysis with HPLC indicated that HP-GOS fermented with S. cerevisiae showed significantly increased levels of 4'/6'-galactosyllactose and total GOS as well as a significantly decreased glucose level. HP-GOS facilitated the growth of Lactobacillus sp. (L. acidophilus and L. casei) and Bifidobacterium sp. (B. longum and B. bifidum). In sum, high-purity GOS has been successfully produced through both an enzymatic process and yeast fermentation. GOS encourages the growth of bacteria such as Lactobacillus and Bifidobacterium that may be beneficial to human gastrointestinal health.

본 연구는 ${\beta}$-galactosidase와 효모 발효에 의해 고순도 갈락토올리도당(HP-GOS)의 제조를 위한 효율적인 방법을 찾고자 수행하였다. 6종의 상업용 ${\beta}$-galactosidase를 이용해 효소반응 전후의 구성당을 각각 비교한 결과, Lactozym 3000L을 이용하여 제조한 GOS에서 효소반응을 통해 생성된 total GOS의 양이 가장 높은 것으로 나타났다. 생성된 GOS의 농도는 초기 lactose로부터 51%의 전환율을 나타냈다. 또한 GOS의 수율은 효모(Saccharomyces cerevisiae)의 발효에 의해 더욱 높아졌는데, 효모를 8% 첨가하여 36시간 발효 후 생성된 GOS의 농도는 71%까지 도달했음을 확인하였다. HPLC를 이용한 구성당 분석 결과, S. cerevisiae에 의한 발효를 통해 제조한 HP-GOS에는 발효 전에 존재했던 glucose의 함량이 급감되었을 뿐 아니라, 4'/6'-galactosyllactose와 total GOS의 양은 유의적으로 증가되었다. HP-GOS는 상업용 GOS보다 Lactobacillus 속(L. acidophilus and L. casei) 및 Bifidobacterium 속(B. longum and B. bifidum)의 성장을 촉진시키는 것으로 확인되었다. 이러한 결과를 종합해 볼 때, 효소 처리 및 효모 발효를 통해 고순도의 GOS가 제조되었으며, 제조된 HP-GOS는 상업용 GOS에 비해 장내 유용균으로 알려진 Bifidobacterium 속과 Lactobacillus 속의 생육을 증가시킴으로써 인간의 장내 건강에도 유익한 영향을 미칠 것으로 사료된다.

Keywords

References

  1. Bridiau N, Taboubi S, Marzouki N, Legoy MD, Maugard T. 2006. beta-Galactosidase catalyzed selective galactosylation of aromatic compounds. Biotechnol Progr 22:326-330 https://doi.org/10.1021/bp050230n
  2. Gonzalez R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE. 2008. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microb 74:4686-4694 https://doi.org/10.1128/AEM.00122-08
  3. Gursoy N. 2011. The effects of Bifidobacterium lactis and galactooligosaccharide (GOS) on ileum and distal colon motility: In vitro study. Afr J Microbiol Res 5:5877-5881
  4. Ito M, Deguchi Y, Miyamori A, Matsumoto K, Kikuchi H, Matsumoto K, Kobayashi Y, Yajima T, Kan T. 1990. Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microbial Ecology & Health and Disease 3:285-292 https://doi.org/10.3109/08910609009140251
  5. Iwasaki K, Nakajima M, Nakao S. 1996. Galacto-oligosaccharide production from lactose by an enzymic batch reaction using $\beta$-galactosidase. Process Biochem 31:69-76 https://doi.org/10.1016/0032-9592(94)00067-0
  6. Krisch J, Bencsik O, Papp T, Vagvolgyi C, Tako M. 2012. Characterization of a beta-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresource Technol 114:555-560 https://doi.org/10.1016/j.biortech.2012.02.117
  7. Li ZY, Xiao M, Lu LL, Li YM. 2008. Production of nonmonosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem 43:896-899 https://doi.org/10.1016/j.procbio.2008.04.016
  8. Macfarlane GT, Steed H, Macfarlane S. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305-344
  9. Mahoney RR. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem 63:147-154 https://doi.org/10.1016/S0308-8146(98)00020-X
  10. Martinez RCR, Cardarelli HR, Borst W, Albrecht S, Schols H, Gutierrez OP, Maathuis AJH, Franco BDGD, De Martinis ECP, Zoetendal EG, Venema K, Saad SMI, Smidt H. 2013. Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. Fems Microbiol Ecol 84:110-123 https://doi.org/10.1111/1574-6941.12041
  11. Nihira T. 2007. Evolution of the oligosaccharide synthesis by glycosynthases. Trends Glycosci Glyc 19:49-50 https://doi.org/10.4052/tigg.19.49
  12. Onishi N, Yamashiro A, Yokozeki K. 1995. Production of galactooligosaccharide from lactose by Sterigmatomyces elviae Cbs8119. Appl Environ Microb 61:4022-4025
  13. Park HY, Kim HJ, Lee JK, Kim D, Oh DK. 2008. Galactooligosaccharide production by a thermostable beta-galactosidase from Sulfolobus solfataricus. World J Microb Biot 24: 1553-1558 https://doi.org/10.1007/s11274-007-9642-x
  14. Prosky L. 2000. What is dietary fiber? J Aoac Int 83:985-987
  15. Shin HJ, Park JM, Yang JW. 1998. Continuous production of galacto-oligosaccharides from lactose by Bullera singularis $\beta$-galactosidase immobilized in chitosan beads. Process Biochem 33:787-792 https://doi.org/10.1016/S0032-9592(98)00045-4
  16. Shin HJ, Yang JW. 1994. Galacto-oligosaccharide production by $\beta$-galactosidase in hydrophobic organic media. Biotechnol Lett 16:1157-1162 https://doi.org/10.1007/BF01020843
  17. Splechtna B, Nguyen TH, Steinbock M, Kulbe KD, Lorenz W, Haltrich D. 2006. Production of prebiotic galacto-oligosaccharides from lactose using beta-galactosidases from Lactobacillus reuteri. J Agr Food Chem 54:4999-5006 https://doi.org/10.1021/jf053127m
  18. Splechtna B, Petzelbauer I, Baminger U, Haltrich D, Kulbe KD, Nidetzky B. 2001. Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme Microb Tech 29:434-440 https://doi.org/10.1016/S0141-0229(01)00412-4
  19. Talukder S. 2015. Effect of dietary fiber on properties and acceptance of meat products: a review. Crit Rev Food Sci 55:1005-1011 https://doi.org/10.1080/10408398.2012.682230
  20. Torres DPM, Goncalves MP, Teixeira JA, Rodrigues LR. 2010. Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Compr Rev Food Sci 9: 438-454 https://doi.org/10.1111/j.1541-4337.2010.00119.x
  21. Trowell H. 1988. Dietary fiber definitions. Am J Clin Nutr 48:1079-1080 https://doi.org/10.1093/ajcn/48.4.1079
  22. Zhang S, Tang WZ, Jiang LL, Hou YM, Yang F, Chen WF, Li XZ. 2015. Elicitor activity of algino-oligosaccharide and its potential application in protection of rice plant (Oryza saliva L.) against Magnaporthe grisea. Biotechnol Biotec Eq 29:646-652 https://doi.org/10.1080/13102818.2015.1039943

Cited by

  1. Effect of dual-type oligosaccharides on constipation in loperamide-treated rats vol.10, pp.6, 2016, https://doi.org/10.4162/nrp.2016.10.6.583