DOI QR코드

DOI QR Code

Performance Evaluation and Analysis of NVM Storage for Ultra-Light Internet of Things

초경량 사물인터넷을 위한 비휘발성램 스토리지 성능평가 및 분석

  • 이은지 (충북대학교 소프트웨어학과) ;
  • 유승훈 (서울대학교 컴퓨터공학부) ;
  • 반효경 (이화여자대학교 컴퓨터공학과)
  • Received : 2015.10.21
  • Accepted : 2015.12.11
  • Published : 2015.12.31

Abstract

With the rapid growth of semiconductor technologies, small-sized devices with powerful computing abilities are becoming a reality. As this environment has a limit on power supply, NVM storage that has a high density and low power consumption is preferred to HDD or SSD. However, legacy software layers optimized for HDDs should be revisited. Specifically, as storage performance approaches DRAM performance, existing I/O mechanisms and software configurations should be reassessed. This paper explores the challenges and implications of using NVM storage with a broad range of experiments. We measure the performance of a system with NVM storage emulated by DRAM with proper timing parameters and compare it with that of HDD storage environments under various configurations. Our experimental results show that even with storage as fast as DRAM, the performance gain is not large for read operations as current I/O mechanisms do a good job hiding the slow performance of HDD. To assess the potential benefit of fast storage media, we change various I/O configurations and perform experiments to quantify the effects of existing I/O mechanisms such as buffer caching, read-ahead, synchronous I/O, direct I/O, block I/O, and byte-addressable I/O on systems with NVM storage.

최근 통신 빛 반도체 기술의 급격한 발전과 함께 소규모 기기에도 컴퓨팅 기능을 탑재하는 사물인터넷 시장이 부상하고 있다. 사물인터넷을 위한 저장장치는 전력소모와 물리적 크기에 제한이 있어 기존 HDD나 SSD 대신 NVRAM 기반의 스토리지가 사용될 것으로 전망되고 있다. 그러나 현재 사물인터넷 플랫폼 기술은 기존의 전통적인 스토리지를 타겟으로 설계되어 NVRAM 스토리지에서는 다양한 비효율성을 초래할 수 있다. 본 논문은 현재의 다양한 운영체제의 I/O 기법들의 효용성과 성능을 NVRAM 스토리지 환경에서 평가하고 분석하여 향후 사물인터넷을 위한 스토리지 기술에 대해 방향성을 제시한다.

Keywords

References

  1. https://en.wikipedia.org/wiki/3D_XPoint
  2. E. Ipek, J. Condict, E. B. Nightingale, D. Burger and T. Moscibroda, "Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Memories," Proceedings of the ACM ASPLOS'10, March, 2010.
  3. G. Atwood, "Phase Change Memory Landscape", Flash Memory Summit, 2011.
  4. J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee, "Better I/O through byte-addressable, persistent memory," ACM Symp. Operating Systems Principles (SOSP), 2009.
  5. X. Wu and A. L. N. Reddy, "SCMFS: A File System for Storage Class Memory," Proc. Int'l Conf. Supercomputing (SC), 2011.
  6. PRAMFS, available at http://pramfs.sourceforge.net
  7. N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt, "MRAMFS: a compressing file system for non-volatile RAM," Proc. 12th IEEE Int'l Symp. Modeling, Analysis, and Simulation of Computer and Telecommun. Systems (MASCOTS), 2004.
  8. S. Baek, C. Hyun, J. Choi, D. Lee, and S. H. Noh, "Design and analysis of a space conscious nonvolatile-RAM file system," Proc. IEEE Region 10 Conf. (TENCON), 2006.
  9. S. Baek, K. Sun, J. Choi, E. Kim, D. Lee, and S. H. Noh, "Taking advantage of storage class memory technology through system software support," Proc. Workshop on Interaction between Operating Systems and Computer Architecture (WIOSCA), 2009.
  10. Emerging Non-Volatile Memory (NVM) Technologies & Markets 2015, Yole Development
  11. J. Kim, N. Kang, "Secure Configuration Scheme of Pre-shared Key for Lightweight Devices in Internet of Things," The Journal of The Institute of Internet, Broadcasting and Communication (JIIBC), Vol. 15, No. 3, pp. 1-6, 2015 https://doi.org/10.7236/JIIBC.2015.15.3.1
  12. J. Park, N. Kang, "Design of Smart Service based on Reverse-proxy for the Internet of Things," The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 14, No. 6, pp. 1-6, 2014 https://doi.org/10.7236/JIIBC.2014.14.6.1