DOI QR코드

DOI QR Code

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim -

여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -

  • Ryu, Nam-Hyong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 류남형 (경남과학기술대학교 조경학과) ;
  • 이춘석 (경남과학기술대학교 조경학과)
  • Received : 2015.10.01
  • Accepted : 2015.12.02
  • Published : 2015.12.31

Abstract

This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.

본 연구는 공원 수림지 경계로부터 내부로의 거리에 따른 수림지 가장자리의 온열환경에 대한 효과를 규명하고자 하였다. 이를 위해 전형적인 여름 날씨를 나타낸 2015년 7월 31일부터 8월 5일까지 6일간 소도읍에 소재하고 있는 장령림인 하동송림의 소나무 순림(수령: $100{\pm}33$년, 울폐도: 75%, 수고: $12.8{\pm}2.7m$, 지하고: $9.8{\pm}2.7m$, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, 표고 7~10m) 남측 가장자리와 함양상림의 졸참나무-개서어나무 군락(수령: 졸참나무 58~123년, 개서어나무 102~125년, 울폐도: 96%, 수고: 교목층 $18.6{\pm}2.3m$, 아교목층 $5.9{\pm}3.2m$, 관목층 $0.5{\pm}0.5m$, 지하고는 교목층 $11.0{\pm}3.2m$, 아교목층 $3.1{\pm}1.7m$, 관목층 $0.2{\pm}0.3m$, 초본층의 피도 60%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, 표고 170~180m) 동측 가장자리의 경계로부터 내부로의 거리별 기온, 상대습도, 풍속, MRT나 UTCI를 측정 및 분석하였다. 그리고 비선형 시그모이드 함수를 적용하여 수림지 가장자리가 가지는 경계로부터의 거리에 따른 기온, 상대습도, 풍속, MRT, UTCI의 저감효과를 구명하였다. 깊이의 결과 값이 -를 나타내는 것은 수림지의 바깥을 의미한다. 1) 최고 기온, 최저 상대습도, 최고 기온시 풍속에 대한 수림지 가장자리 효과가 미치는 깊이는 상록침엽수림인 하동송림의 경우는 수림지의 경계로부터 각각 $12.7{\pm}4.9m$, $15.8{\pm}9.8m$ 그리고 $23.8{\pm}26.2m$였으며, 낙엽활엽수림인 함양상림의 경우는 수림지의 경계로부터 각각 $3.7{\pm}2.2m$, $4.9{\pm}4.4m$ 그리고 $2.6{\pm}7.8m$였다. 2) 이용자가 체감하는 더위에 직접적인 영향을 주는 인체가 흡수한 온열환경에 근거한 최고 MRT와 최고 UTCI(체감더위지수)에 대한 수림지 가장자리 효과가 미치는 깊이는 하동송림의 경우는 수림지의 경계로부터 각각 $7.1{\pm}1.7m$$4.3{\pm}4.6m$였으며, 함양상림의 경우는 수림지의 경계로부터 각각 $5.8{\pm}4.9m$$3.5{\pm}4.1m$였다. 3) 미기후 즉 온열환경 요소인 기온, 상대습도, 풍속 그리고 인체가 흡수한 온열환경에 근거한 주간(10:00~17:00) MRT와 UTCI에 대한 수림지 가장자리의 효과는 식생밀도가 상대적으로 높고, 하층식생이 발달한 함양상림이 식생밀도가 낮고, 하층식생의 거의 없는 하동송림에 비해 높게 나타났다. 따라서 체감 더위지수인 UTCI의 10분 평균값이 최댓값을 나타낸 시점을 기준으로 하면, 수림지 경계로부터 내부로의 거리가 하동송림의 경우는 $4.3{\pm}4.6m$, 함양상림의 경우는 $3.5{\pm}4.1m$에서 온열환경 기울기의 변화가 비교적 완만해지므로, 수림지 계획시 이용객의 온열환경을 고려한 완충대의 적정 폭은 하동송림의 경우는 4.3~8.9m, 함양상림의 경우는 3.5~7.6m이다. 또한 온열환경에 대한 완충효과를 극대화하기 위해서, 수림지 완충대 식생의 수직구조는 다층 구조의 수관과 닫힌 가장자리로 하여야 한다.

Keywords

References

  1. Blazejczyk, K., G. Jendritzky, P. Brode, D. Fiala, G. Havenith, Y. Epstein, A. Psikuta and B. Kampmann(2013) An introduction to the Universal Thermal Climate Index(UTCI). Geographia Polonica 86(1): 5-10. https://doi.org/10.7163/GPol.2013.1
  2. BS EN ISO 7726, 2001, Ergonomics of Thermal Environments-Instruments for measuring physical quantities.
  3. Davies-Colley R. J., G. W. Payne and M. van Elswijk(2000) Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24(2): 111-121.
  4. Ewers, R. M. and C. Banks-Leite(2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS ONE 8(3): e58093. https://doi.org/10.1371/journal.pone.0058093
  5. Fagan, W. F., M. J. Fortin and C. Soykan(2003) Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. Bioscience 53: 730-738. https://doi.org/10.1641/0006-3568(2003)053[0730:IEDADM]2.0.CO;2
  6. Heithecker, T. D. and C. B. Halpern(2007) Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. Forest Ecology and Management 248: 163-173. https://doi.org/10.1016/j.foreco.2007.05.003
  7. Hennenberg K. J., D. Goetze, J. Szarzynski, B. Orthmann, B. Reineking, I. Steinked and S. Porembski(2008) Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic Appl. Ecol. 9: 275-285. https://doi.org/10.1016/j.baae.2007.02.004
  8. Joo, C. H., J. H. Kim and J. H. Yoon(2014) A study on green space management planning considering urban thermal environment. Journal of Environmental Science International 23(7): 1349-1358.[in Korean] https://doi.org/10.5322/JESI.2014.23.7.1349
  9. Korea Forest Research Institute(2012) Management Legislation and Strategy in Protection Forests[in Korean]
  10. Lin, T. P., A. Matzarakis and J. J. Huang(2006) Thermal comfort and passive design strategy of bus shelters. The 23rd Conference on Passive and Low Energy Architecture.
  11. Matlack, G. R.(1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Cons. 66: 185-194. https://doi.org/10.1016/0006-3207(93)90004-K
  12. Murcia, C.(1995) Edge effects in fragmented forests: Implications for conservation. Trends. Ecol. Evol. 10: 58-62. https://doi.org/10.1016/S0169-5347(00)88977-6
  13. National Research Institute of Cultural Heritage(2010) Natural Woodland Heritage Survey and Research.[in Korean]
  14. Park, J. H.(2010) Analysis on the plant and site characteristics for the restoration of Sangrim woodlands in Hamyang-Gun, KoreaII. J. Korean Env. Res. Tech. 13(6): 173-184.[in Korean]
  15. Park, J. H., S. W. Bae and S. T. Lee(2010) Analysis on the effect for the rest-year system areas of Songrim woodlands in Hadong-Gun. Korea. J. Korean Env. Res. Tech. 13(5): 172-179.[in Korean]
  16. Ryu, N. H. and C. S. Lee(2013) Pergola's shading effects on the thermal comfort index in the summer middays. Journal of the Korean Institute of Landscape Architecture 41(6): 52-61.[in Korean] https://doi.org/10.9715/KILA.2013.41.6.052
  17. Ryu, N. H. and C. S. Lee(2014) Effects for the thermal comfort index improvment of park woodlands and lawns in summer. Journal of the Korean Institute of Landscape Architecture 42(6): 21-30.[in Korean] https://doi.org/10.9715/KILA.2014.42.6.021
  18. Watanabe, S. and T. Horikoshi(2012) Calculation of mean radiant temperature in outdoors based on measurements. Japanese J. Biometeorology 49(2): 49-59.[in Japanese]
  19. Williams-Linera, G.(1990) Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78: 356-373. https://doi.org/10.2307/2261117
  20. Wuyts, K., K. Verheyen, A. D. Schrijver, W. M. Cornelis and D. Gabriels (2008) The impact of forest edge structure on longitudinal patterns of deposition, wind speed, and turbulence. Atmospheric Environment 42: 8651-8660. https://doi.org/10.1016/j.atmosenv.2008.08.010
  21. http://www.utci.org/index.php