DOI QR코드

DOI QR Code

Effect of submerged culture of Ceriporia lacerata mycelium on GLUT4 protein in db/db mouse

db/db 마우스에서 Ceriporia lacerata 균사체 배양액이 GLUT4 발현에 미치는 영향

  • 신은지 ((주)퓨젠바이오농업회사법인) ;
  • 김지은 (계명대학교 식품가공학과) ;
  • 김지혜 (계명대학교 의과대학) ;
  • 박용만 ((주)퓨젠바이오농업회사법인) ;
  • 윤성균 ((주)퓨젠바이오농업회사법인) ;
  • 장병철 (계명대학교 의과대학) ;
  • 이삼빈 (계명대학교 식품가공학과) ;
  • 김병천 ((주)월드바이오텍)
  • Received : 2015.10.07
  • Accepted : 2015.11.23
  • Published : 2015.12.30

Abstract

In this study, we evaluated the antidiabetic effect of a submerged culture of Ceriporia lacerata mycelium (CL01) on hematological indices, as well as protein and mRNA expression of the insulin-signaling pathway, in db/db mice. After CL01 was administrated for 4 weeks, blood glucose levels decreased consistently, and plasma insulin and c-peptide levels each decreased by roughly 55.8%, 40% of those in the negative control (p<0.05). With regard to HOMA-IR, an insulin resistance index, insulin resistance of the CL01-fed group improved over that of the negative control group by about 62% (p<0.05). In addition, we demonstrated that the protein expression levels of pIR, pAkt, pAMPK, and GLUT4 and the mRNA expression levels of Akt2, IRS1, and GLUT4 in the muscle cells of db/db mice increased in the CL01-fed group compared to the corresponding levels in the control group. These results demonstrate that CL01 affects glucose metabolism, upregulates protein and gene expression in the insulin-signaling pathway, and decreases blood glucose levels effectively by improving insulin sensitivity. More than 90% of those who suffer from type 2 diabetes are more likely to suffer from hyperinsulinemia, hypertension, obesity, and other comorbidities because of insulin resistance. Therefore, it is possible that CL01 intake could be used as a fundamental treatment for type 2 diabetes by lowering insulin resistance, and these results may prove be useful as basic evidence for further research into the mechanisms of a cure for type 2 diabetes.

최근 경제가 급속히 성장하면서 세계적으로 당뇨병이 심각한 대사성 질환으로 대두되고 있으며 이에 따라 혈당조절에만 초점을 맞춘 경구용 당뇨병 치료제가 아니라 당뇨병을 근본적으로 치료할 수 있는 혈당 강하 소재를 개발하기 위한 연구가 늘어나고 있다. 본 연구에서는 선행 연구에서 항당뇨 효능이 확인된Ceriporia lacerata 균사체 배양물건조물(CL01)을 제 2형 당뇨병 동물 모델인db/db 마우스에 경구투여하여 CL01이 혈액학적 지표 및 인슐린 신호 전달기전 상의 유관 단백질과 mRNA 발현에 미치는 영향을 평가하였다. CL01을 4주간 투여했을 때 혈당이 지속적으로 감소하였고, 혈청 인슐린, c-peptide 농도도 각각 음성대조군의 55.8%, 40% 수준으로 감소하였다(p<0.05). 인슐린 저항성을 반영하는 지표인 HOMA-IR 수치를 계산한 결과, CL01 투여군에서 인슐린 저항성이 음성대조군 대비 약 62% 개선되었다(p<0.05). 또한 인슐린 신호 전달에 관여하는 pIR, pAkt, pAMPK, GLUT4 단백질 및 Akt2, IRS1, GLUT4 mRNA 발현이 증가하였다. 이들 결과를 통해 CL01이 당 대사 및 인슐린 신호 전달에 관여하는 유관 단백질 및 유전자 발현에 영향을 미치며 이에 따라 인슐린 저항성을 개선하여 혈당을 효과적으로 감소시키는 것을 알 수 있다. 제 2형 당뇨병 환자의 90% 이상이 인슐린 저항성으로 인한 고인슐린혈증, 당내성 장애, 고혈압, 비만 등의 대사 이상이 생길 확률이 증가하기 때문에 CL01의 섭취를 통해 GLUT4 발현을 증가시켜 인슐린 저항성을 낮추는 것이 제 2형 당뇨병의 근본적인 치료에 이용될 수 있을 것으로 사료되며 이 연구가 당뇨병 치료의 추가적인 기전 연구를 위한 기초 증거로 활용될 수 있을 것이다.

Keywords

References

  1. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypolycemic treatment for diabetes mellitus. Int J Nanomedicine, 7, 1189-1202
  2. Korean Statistical Association (2013) Annual report on the cause of death statistics. Korean Statistical Association, Seoul, Korea
  3. Beckman JA, Creager MA, Lbby P (2002) Diabetes and atherosclerosis : epidermiology, pathophysiology, and management. JAMA, 287, 2570-2581 https://doi.org/10.1001/jama.287.19.2570
  4. Fonseca V (2006) The role of basal insulin therapy in patients with type 2 diabetes mellitus. Insulin, 1, 51-60 https://doi.org/10.1016/S1557-0843(06)80010-2
  5. Goldstein BJ (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. J Cardiol, 90, 3G-10G
  6. Hwang KY, Kim YH, Cho YS, Park YS, Lee JY, Kang KD, Kim K, Joo DK, Seong SI (2008) Hypoglycemic effect of fermented soybean culture mixed with mulberry leaves on neonatal streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr, 37, 452-458 https://doi.org/10.3746/jkfn.2008.37.4.452
  7. Chung MJ, Lee YS, Kim BC, Lee SB, Moon TH, Lee SJ, Park KH (2006) The hypoglycemic effects of acarviosine-glucose modulate hepatic and intestinal glucose transporters in vivo. Food Sci Biotechnol, 15, 851-855
  8. Bell GL, Burant CF, Takeda J, Gould GK (1993) Structure and function of mammalian facilitative sugar transporters. J Biol Chem, 268, 161-164
  9. Belman JP, Habtemichael EN, Bogan JS (2014) A proteolytic pathway that controls glucose uptake in fat and muscle. Endocr Metab Disord, 15, 55-66 https://doi.org/10.1007/s11154-013-9276-2
  10. Ishiki M, Klip A (2005) Minireview : recent developments in the regulation of glucose transporter-4 traffic : new signals, locations, and partners. Endocrinology, 146, 5071-5078 https://doi.org/10.1210/en.2005-0850
  11. Ishikura S, Bilan PJ, Klip A (2007) Rabs 8A and 14 and targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun, 353, 1074-7079 https://doi.org/10.1016/j.bbrc.2006.12.140
  12. Hayashi T, Wojtaszewski JF, Goodyear LJ (1997) Exercise regulation of glucose transport in skeletal muscle. Am J Physiol, 273, 1039-1051
  13. Kang HJ (2007) Exercise physiologic mechanisms related to effective exercise prescription in type 2 diabetes mellitus. Korean J Health Promot Dis Prev, 7, 9-16
  14. Thirone AC, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab, 17, 72-78 https://doi.org/10.1016/j.tem.2006.01.005
  15. Thong FS, Dugani CB, Klip A (2005) Turning signals on and off : GLUT4 traffic in the insulin-signaling highway. Physiology (Bethesda), 20, 271-284 https://doi.org/10.1152/physiol.00017.2005
  16. White MF (2003) Insulin signaling in health and disease. Science, 302, 1710-1711 https://doi.org/10.1126/science.1092952
  17. Van-pelt RE, Jones PP, Davy KP, Desouza CA, Tanaka H, Davy BM, Seals DR (1997) Regular exercise and the age-related decline in resting metavolic rate in women. J Clin Endocrinol Metab, 82, 3208-3212
  18. Minokoshi Y, Kahn CR, Kahn BB (2003) Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem, 278, 33609-33612 https://doi.org/10.1074/jbc.R300019200
  19. Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol, 45, 485-491
  20. Lin Y, He X, Han G, Tian Q, Hu W (2011) Removal of crystal violet from aqueous solution using powdered mycelia biomass of Ceriporia lacerata P2. J Environ Sci, 23, 2055-2062 https://doi.org/10.1016/S1001-0742(10)60643-2
  21. Park JY (2007) Biodegradation of dimethyl phthalate by white rot fungus, Ceriporia lacerata. MS thesis. Seoul National University, Seoul, Korea
  22. Kim JE, Kim HJ, Lee SP (2012) Hyperglycemic effect of submerged culture extract of Ceriporia lacerata in streptozotocin-induced diabetic rats. Food Sci Biotechnol, 21, 1685-1693 https://doi.org/10.1007/s10068-012-0224-9
  23. Shin EJ, Kim JE, Kim JH, Park YM, Yoon SK, Jang BC, Lee SP, Kim BC (2015) Hypoglycemic effect of submerged culture of Ceriporia lacerata mycelium. Korean J Food Preserv, 22, 145-153 https://doi.org/10.11002/kjfp.2015.22.1.145
  24. Wannernes F, Caprio M, Gatta L, Fabbri A, Bonini S, Moretti C (2008) Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol Cell Endocrinol, 292, 11-19 https://doi.org/10.1016/j.mce.2008.05.018
  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Tuner RC (1985) Homeostasis model assessment : insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412-419 https://doi.org/10.1007/BF00280883
  26. Jung UJ, Lee MK, Jeong KS, Choi MS (2004) The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134, 2499-2503 https://doi.org/10.1093/jn/134.10.2499
  27. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, McHugh-Pemu K (2002) Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil Steril, 78, 479-486 https://doi.org/10.1016/S0015-0282(02)03303-4
  28. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK (1990) Cardiovascular risk factors in confirmed pre-diabetic individuals : does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA, 263, 2893-2898 https://doi.org/10.1001/jama.1990.03440210043030
  29. Kim JS, Park KS Lee YY (1998) Characteristic of insulin resistance in Korea. Diabetes, 22, 84-91
  30. Ha JH, Lee SH (2010) Role of AMPK in the regulation of cellular energy metabolism. Endocrinol Metab, 25, 9-17
  31. Yuan Z, He P, Cui J, Takeuchi H (1998) Hypoglycemic effect of water-soluble polysaccharide from Auricularia-judae Quel. on genetically diabetic KK-A mice. Biosci Biotechnol Biochem, 62, 1898-1903 https://doi.org/10.1271/bbb.62.1898
  32. Kiho T, Sobue S, Ukai S (1994) Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of Agrocybe cylindracea. Carbohydr Res, 251, 81-87 https://doi.org/10.1016/0008-6215(94)84277-9
  33. Kim JH, Park YK, Kim JE, Lee SP, Kim BC, Jang BC (2013) Crude extract of Ceriporia lacerata has a protective effect on dexamethasone-induced cytotoxicity in INS-1 cells via the modulation of PI3K/PKB activity. Int J Mol Med, 32, 179-186 https://doi.org/10.3892/ijmm.2013.1364

Cited by

  1. Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.325
  2. 유산균을 이용한 홍고추의 발효를 통한 항비만과 항당뇨 효과 vol.29, pp.3, 2015, https://doi.org/10.5352/jls.2019.29.3.354
  3. 녹두(Phaseolus aureus L.) 급여가 당뇨성 흰쥐의 BUN 및 간 기능 효소 활성에 미치는 영향 vol.29, pp.4, 2015, https://doi.org/10.5322/jesi.2020.29.4.351
  4. Ceriporia lacerata Mycelium Culture Medium as a Novel Anti-Aging Microbial Material for Cosmeceutical Application vol.8, pp.4, 2021, https://doi.org/10.3390/cosmetics8040101