DOI QR코드

DOI QR Code

Comparative Proteome Analysis of Cyanidin 3-O-glucoside Treated Helicobacter pylori

  • Kim, Sa-Hyun (Department of Clinical Laboratory Science, Semyung University) ;
  • Kim, Jong-Bae (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • Received : 2015.12.20
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

Some virulence proteins of Helicobacter pylori, such as vacuolating cytotoxic protein A (VacA) and cytotoxin-associated gene protein A (CagA) have been reported to be causative agents of various gastric diseases including chronic gastritis, gastric ulcer or gastric adenocarcinoma. The expression level of these virulence proteins can be regulated when H. pylori is exposed to the antibacterial agent, cyanidin 3-O-glucoside (C3G) as previously reported. In this study, we analyzed the quantitative change of various virulence proteins including CagA and VacA by C3G treatment. We used 2-dimensional electrophoresis (2-DE) to analyze the quantitative change of representative ten proteome components of H. pylori 60190 ($VacA^+/CagA^+$; standard strain of Eastern type). After 2-DE analysis, spot intensities were analyzed using ImageMaster$^{TM}$ 2-DE Platinum software then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). Next, we selected major virulence proteins of H. pylori among quantitatively meaningful ten spots and confirmed the 2-DE results by Western blot analysis. These results suggest that cyanidin 3-O-glucoside can modulate a variety of H. pylori pathogenic determinants.

Keywords

References

  1. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999. 14: 176-180.
  2. Backert S, Kwok T, Schmid M, Selbach M, Moese S, Peek RM Jr, Konig W, Meyer TF, Jungblut PR. Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2005. 5: 1331-1345. https://doi.org/10.1002/pmic.200401019
  3. Censini S, Lang C, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag pathogenicity island of Helicobacter pylori encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996. 93: 14648-14653. https://doi.org/10.1073/pnas.93.25.14648
  4. Cho MJ, Jeon BS, Park JW, Jung TS, Song JY, Lee WK, Choi YJ, Choi SH, Park SG, Park JU, Choe MY, Jung SA, Byun EY, Baik SC, Youn HS, Ko GH, Lim D, Rhee KH. Identifying the major proteome components of Helicobacter pylori strain 26695. Electrophoresis. 2002. 23: 1161-1173. https://doi.org/10.1002/1522-2683(200204)23:7/8<1161::AID-ELPS1161>3.0.CO;2-7
  5. Cover TL, Cao P, Lind CD, Tham KT, Blaser MJ. Correlation between vacuolating cytotoxin production by Helicobacter pylori isolates in vitro and in vivo. Infect Immun. 1993. 61: 5008-5012.
  6. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 2005. 3: 320-332. https://doi.org/10.1038/nrmicro1095
  7. Doig P, Austin JW, Kostrzynska M, Trust TJ. Production of a conserved adhesin by the human gastroduodenal pathogen Helicobacter pylori. J Bacteriol. 1992. 174: 2539-2547. https://doi.org/10.1128/jb.174.8.2539-2547.1992
  8. Eaton KA, Suerbaum S, Josenhans C, Krakowka S. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun. 1996. 64: 2445-2448.
  9. Glocker E, Lange C, Covacci A, Bereswill S, Kist M, Pahl HL. Proteins encoded by the cag pathogenicity island of Helico- bacter pylori are required for NF-kappaB activation. Infect Immun. 1998. 66: 2346-2348.
  10. Gobert AP, Mersey BD, Cheng Y, Blumberg DR, Newton JC, Wilson KT. Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol. 2002. 15: 6002-6006.
  11. Gonzalez L, Marrero K, Reyes O, Rodriguez E, Martinez L, Rodriguez BL. Cloning and expression of a recombinant CagA-gene fragment of Helicobacter pylori and its preliminary evaluation in serodiagnosis. Biomedica. 2013. 33: 546-553.
  12. Israel DA, Salama N, Arnold CN, Moss SF, Ando T, Wirth HP, Tham KT, Camorlinga M, Blaser MJ, Falkow S, Peek RM Jr. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest. 2001. 107: 611-620. https://doi.org/10.1172/JCI11450
  13. Ito Y, Azuma T, Ito S, Miyaji H, Hirai M, Yamazaki Y, Sato F, Kato T, Kohli Y, Kuriyama M. Analysis and typing of the vacA gene from cagA-positive strains of Helicobacter pylori isolated in Japan. J Clin Microbiol. 1997. 35: 1710-1721.
  14. Jungblut PR, Bumann D, Haas G, Zimmy-Arndt U, Holland P, Lamer S, Siejak F, Aebischer A, Meyer TF. Comparative proteome analysis of Helicobacter pylori. Mol Microbiol. 2000. 36: 710-725.
  15. Kim SH, Park M, Woo HJ, Tharmalingam M, Lee G, Rhee KJ, Eom YB, Han SI, Seo WD, Kim JB. Inhibitory Effects of Anthocyanins on Secretion of Helicobacter pylori CagA and VacA Toxins. Int J Med Sci. 2012. 9: 838-842. https://doi.org/10.7150/ijms.5094
  16. Kim SH, Woo HJ, Park M, Rhee KJ, Moon C, Lee DS, Seo WD, Kim JB. Cyanidin 3-O-glucoside reduces Helicobacter pylori VacA-induced cell death of gastric KATO III cells through inhibition of the SecA pathway. Int J Med Sci. 2014. 11: 742-747. https://doi.org/10.7150/ijms.7167
  17. Klimovich AV, Samoilovich MP, Suvorov AN. Development and characterization of Helicobacter pylori CagA recombinant fragments. Zh Mikrobiol Epidemiol Immunobiol. 2010. 2: 74-79.
  18. Lee YY, Belas R. Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J Bacteriol. 2015. 197: 159-173. https://doi.org/10.1128/JB.02235-14
  19. Lee YY, Patellis J, Belas R. Activity of Proteus mirabilis FliL is viscosity dependent and requires extragenic DNA. J Bacteriol. 2013. 195: 823-832. https://doi.org/10.1128/JB.02024-12
  20. Lock RA, Coombs GW, McWilliams TM, Pearman JW, Grubb WB, Melrose GJ, Forbes GM. Proteome analysis of highly immunoreactive proteins of Helicobacter pylori. Helicobacter. 2002. 7: 175-182. https://doi.org/10.1046/j.1523-5378.2002.00078.x
  21. Megraud F, Neman-Simha V, Brûgmann D. Further evidence of the toxic effect of ammonia produced by Helicobacter pylori urease on human epithelial cells. Infect Immun. 1992. 60: 1858-1863.
  22. Meyer-ter-Vehn T, Covacci A, Kist M, Pahl HL. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem. 2000. 275: 16064-16072. https://doi.org/10.1074/jbc.M000959200
  23. Park JW, Song JY, Lee SG, Jun JS, Park JU, Chung MJ, Ju JS, Nizamutdinov D, Chang MW, Youn HS, Kang HL, Baik SC, Lee WK, Cho MJ, Rhee KH. Quantitative analysis of representative proteome components and clustering of Helicobacter pylori clinical strains. Helicobacter. 2006. 11: 533-543. https://doi.org/10.1111/j.1523-5378.2006.00456.x
  24. Rassow J. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun Signal. 2011. 9: 26. https://doi.org/10.1186/1478-811X-9-26
  25. Selbach M, Moese S, Meyer TF, Beckert S. Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun. 2002. 70: 665-671. https://doi.org/10.1128/IAI.70.2.665-671.2002
  26. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 2011. 7: e1002237. https://doi.org/10.1371/journal.ppat.1002237
  27. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997. 7: 539-547.
  28. Waidner D, Greiner S, Odenbreit S. Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun. 2002. 70: 3923-3929. https://doi.org/10.1128/IAI.70.7.3923-3929.2002