DOI QR코드

DOI QR Code

Genetic Change from Colorectal Carcinoma Patients Using Comparative Genomic Hybridization

비교유전자교잡법을 이용한 대장암환자에서의 유전자변화

  • Lee, Jae Sik (Department of Clinical Laboratory Science, Hyejeon College)
  • 이재식 (혜전대학교 임상병리과)
  • Received : 2015.09.29
  • Accepted : 2015.11.01
  • Published : 2015.12.30

Abstract

Colorectal carcinoma is one of the four major cancers in Korea, and it shows the tendency of increase every year due to economic development and changes to western styles. Accordingly, various diagnostic methods are needed and so comparative genomic hybridization (CGH) was performed. Deletion was detected on 5q (10%), 10q (17%), 17p (40%), 18p (23%), 18q (47%), 22q (23%), and higher deletion loci were 18q (12/30, 47%), 17p (12/30, 40%), and 22q (7/30, 23%). Amplification was shown on chromosomes 6pq (10%), 7p (17%), 7q (33%), 8q (13%), 9pq (10%), 12q (17%), 13q (37%), 20p (23%), and 20q (57%) respectively. The highest amplification was detected on chromosomes 20q (17/30, 57%), 13q (11/30, 37%), and 7q (10/30, 33%). The genetic change pattern with the locus of colorectal carcinoma was shown mean 3.1 (amplification 1.7, deletion 1.4) on the right colorectal carcinoma, while rectal carcinoma appeared high mean 6.3 (amplification 3.7, deletion 2.6) (p<0.001). The genetic change pattern with lymphatic gland metastasis, mean 3.5 (amplification 2.2, deletion 1.3) from "no metastasis" group, while high mean 6.3 (amplification 3.5, deletion 2.8) from metastasis group (p<0.003). The genetic change pattern with disease stages appeared mean 3.5 (amplification 2.1, deletion 1.4) from I-II stages, while high mean 6.0 (amplification 3.4, deletion 2.6) from III-IV stages (p<0.006). No significance was observed in comparing histological classification and serum CEA increased groups.

대장암은 우리나라에서 많이 발병하는 4대 암의 하나로써, 경제적인 발전을 통한 생활양식의 서구화 등으로 인해 매년 증가 추세에 있다. 따라서 대장암의 다양한 진단방법이 요구되고 있으며, 새로운 진단방법으로 가능한 Comparative Genomic Hybridization 실험을 하였다. 실험결과 Deletion은 5q (10%), 10q (17%), 17p (40%), 18p (23%), 18q (47%), 22q (23%)이며, 가장 많은 빈도로 관찰된 것은 18q, 17p, 22q로서 18q에서 47% (14/30)가, 17p에서 40% (12/30)가, 22q에서 23% (7/30)가 관찰되었다. Amplification은 염색체 6pq (10%), 7p (17%), 7q (33%), 8q (13%), 9pq (10%), 12q (17%), 13q (37%), 20p (23%), 20q (57%)부분에서 증폭이 보여졌다. 가장 많은 빈도로 관찰된 것은 20q, 13q, 7q로서 20q에서 57% (17/30)가, 13q에서 37% (11/30)가, 7q에서 33% (10/30)가 관찰되었다. 대장암의 위치에 따른 유전자 변이 양상은 우측 대장암이 평균 3.1개(증폭 1.7개, 결실 1.4개)인데 반해, 직장암은 평균 6.3개(증폭 3.7개, 결실 2.6개)로서 높았다(p<0.001). 림프절 전이에 따른 유전자 변이 양상은 전이가 없는 군에서는 평균 3.5개(증폭 2.2개, 결실 1.3개)인데 반해, 림프절 전이가 있는 군은 평균 6.3개(증폭 3.5개, 결실 2.8개)로서 높았다(p<0.003). 병기별에 따른 유전자 변이 양상은 I~II병기에서는 평균 3.5개(증폭 2.1개, 결실 1.4개)인데 반해, III~IV병기에서는 평균 6.0개(증폭 3.4개, 결실 2.6개)로서 높았다(p<0.006). 조직학적 분류에 따른 비교와 혈청 CEA 증가군에 대한 비교는 큰 차이가 없었다.

Keywords

References

  1. Arriba M, Garcia JL, Inglada-Perez L, Rueda D, Osorio I, Rodriguez Y, et al. DNA copy number profiling reveals different patterns of chromosomal instability within colorectal cancer according to the age of onset. Mol Carcinog. 2015,25:e22315.
  2. Brim H, Lee E, Abu-Asab MS, Chaouchi M, Razjouyan H, Namin H, et al. Genomic aberrations in an African American colorectal cancer cohort reveals a MSI-specific profile and chromosome X amplification in male patients. PLoS One. 2012,7(8):e40392. https://doi.org/10.1371/journal.pone.0040392
  3. Day E, Poulogiannis G, McCaughan F, Mulholland S, Arends MJ, Ibrahim AE, et al. IRS2 is a candidate driver oncogene on 13q34 in colorectal cancer. Int J Exp Pathol. 2013,94(3):203-211
  4. De Angelis PM, Clausen OP, Schjolberg A, Stokke T. Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy, genotypes and phenotypes. Br J Cancer. 1999,80(4):526-535 https://doi.org/10.1038/sj.bjc.6690388
  5. Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997,272(38):23659-23667. https://doi.org/10.1074/jbc.272.38.23659
  6. Henrikson NB, Webber EM, Goddard KA, Scrol A, Piper M, Williams MS, et al. Family history and the natural history of colorectal cancer: systematic review. Genet Med. 2015,17(9):702-712 https://doi.org/10.1038/gim.2014.188
  7. Laczmanska I, Karpinski P, Kozlowska J, Bebenek M, Ramsey D, Sedziak T, et al. Copy number alterations of chromosomal regions enclosing protein tyrosine phosphatase receptor-like genes in colorectal cancer. Pathol Res Pract. 2014,210(12):893-896 https://doi.org/10.1016/j.prp.2014.07.010
  8. Meijer GA, Hermsen MA, Baak JP, van Diest PJ, Meuwissen SG, Belien JA, et al. Progression from colorectal adenoma to carcinoma is associated with non-random chromosomal gains as detected by comparative genomic hybridization. J Clin Pathol. 1998,51(12):901-909. https://doi.org/10.1136/jcp.51.12.901
  9. Nakao K, Shibusawa M, Ishihara A, Yoshizawa H, Tsunoda A, Kusano M, et al. Genetic changes in colorectal carcinoma tumors with liver metastases analyzed by comparative genomic hybridization and DNA ploidy. Cancer. 2001,91(4):721-726. https://doi.org/10.1002/1097-0142(20010215)91:4<721::AID-CNCR1057>3.0.CO;2-3
  10. Nakao K, Shibusawa M, Tsunoda A, Yoshizawa H, Murakami M, Kusano M, et al. Genetic changes in primary colorectal cancer by comparative genomic hybridization. Surg Today. 1998,28(5):567-569. https://doi.org/10.1007/s005950050185
  11. O'Mahoney PR, Scherl EJ, Lee SW, Milsom JW. Adenocarcinoma of the ileal pouch mucosa: case report and literature review. Int J Colorectal Dis. 2015,30(1):11-18. https://doi.org/10.1007/s00384-014-2043-3
  12. Paredes-Zaglul A, Kang JJ, Essig YP, Mao W, Irby R, Wloch M, et al. Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res. 1998,4(4):879-886
  13. Provenzale D, Jasperson K, Ahnen DJ, Aslanian H, Bray T, Gupta S, et al. Colorectal Cancer Screening, Version 1. 2015. J Natl Compr Canc Netw. 2015,13(8):959-968. https://doi.org/10.6004/jnccn.2015.0116
  14. Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer. 1996,15(4):234-245. https://doi.org/10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2
  15. Sawada T, Yamamoto E, Suzuki H, Nojima M, Maruyama R, Shioi Y, et al. Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2013,52(2): 140-149. https://doi.org/10.1002/gcc.22013
  16. Shi ZZ, Zhang YM, Shang L, Hao JJ, Zhang TT, Wang BS, et al. Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization. BMC Med Genomics. 2012,5:52.doi:10.1186/1755-8794-5-52.
  17. Shin A, Jung KW, Won YJ. Colorectal cancer mortality in Hong Kong of China, Japan, South Korea, and Singapore. World J Gastroenterol. 2013,19(7):979-983. https://doi.org/10.3748/wjg.v19.i7.979
  18. Therkildsen C, Jonsson G, Dominguez-Valentin M, Nissen A, Rambech E, Halvarsson B, et al. Gain of chromosomal region 20q and loss of 18 discriminates between Lynch syndrome and familial colorectal cancer. Eur J Cancer. 2013,49(6):1226-1235 https://doi.org/10.1016/j.ejca.2012.11.011
  19. Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer. 1998,21(3):177-184 https://doi.org/10.1002/(SICI)1098-2264(199803)21:3<177::AID-GCC1>3.0.CO;2-X
  20. Vogelstein B, Fearon ER. A genetic model for colorectal tumorigenesis. Cell. 1990,61(5):759-767. https://doi.org/10.1016/0092-8674(90)90186-I
  21. Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med. 2001,344(16):1196-1206 https://doi.org/10.1056/NEJM200104193441603
  22. Zenklusen JC, Thompson JC, Klein-Szanto AJ, Conti CJ. Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q31.1: evidence for a broad range tumor suppressor gene. Cancer Res. 1995,55(6):1347-1350.