A Review of the Cognitive Neuroscience of Creativity

창의성에 대한 인지신경과학 연구 개관

  • Received : 2015.10.05
  • Accepted : 2015.11.09
  • Published : 2015.12.31

Abstract

Creativity refers to the ability to generate novel and useful ideas. Understanding the mechanism of creativity and its enhancement is important in order to solve major problems of the modern society and to improve the wellness of mankind. Creativity is a highly heterogeneous and complex ability which should not be conceptualized as a single entity. Thus, the current literature on creativity is based on a component process approach to creativity. The present study introduces cognitive neuroscience research studying the mechanism of divergent thinking, insight, relational thinking and artistic creativity which are the major components of creativity. Based on an expansive review, the early hypothesis of hemispheric asymmetry emphasizing the importance of the right as opposed to the left hemisphere is not supported by scientific evidence. In addition, there is no consensus or consistency on which specific brain region is related to a certain component of creativity. In fact, there is a mixture of studies reporting involvement of various brain regions across all four lobes of the brain. This inconsistency in the literature most likely reflects heterogeneity of the component processes of creativity and sensitivity of the neural response to differences across tasks and cognitive strategy. The present study introduces examples of representative studies reporting seminal findings on the neural basis and the enhancement of creativity based on innovative methodology. In addition, we discuss limitations of the current cognitive neuroscience approach to creativity and present directions for future research.

창의성은 독창적이고 유용한 아이디어를 산출할 수 있는 능력을 말한다. 현대 사회의 많은 문제들을 해결하고 인류의 복지를 증진시키기 위해 창의성의 기전을 이해하고 이를 증진할 수 있는 방안에 대한 연구는 매우 중요하다. 창의성은 매우 이질적이고 복합적인 능력으로서 이를 하나의 능력으로 개념화하는 것은 적절하지 않다. 따라서 학계에서는 창의성의 개별 구성 요소를 중심으로 창의성의 기전에 대한 연구가 활발하게 이루어지고 있다. 본 개관 연구에서는 창의성의 주요한 구성 요소인 확산적 사고, 통찰, 관계적 사고 그리고 예술적 창의성에 대한 인지신경과학 연구들을 소개한다. 여러 연구 결과를 종합적으로 고려한 결과, 창의성의 인지신경학적 기전과 관련하여 우반구가 좌반구보다 우세하다는 가설은 실험적 증거에 의해 지지되지 않았다. 또한, 창의성과 관련하여 특정 뇌 영역의 중요성이 일관되게 보고되고 있지 않으며, 다양한 뇌 영역의 활동성이 창의성과 관계된다는 연구 결과가 혼재하고 있다. 이러한 상이한 연구 결과가 관찰되는 이유는 창의성의 각 구성 요소의 이질성 뿐 아니라, 연구에 사용된 과제의 특수성과 과제에 의해 유발된 인지적 전략의 차이에 의해 뇌 활동이 달라지기 때문인 것으로 해석할 수 있다. 본 개관 연구에서는 창의성의 요소 별 뇌기반과 창의성의 증진에 대하여 우수한 연구 방법을 사용하여 탁월한 연구 성과를 이룬 대표적인 사례들을 소개하고 현행 연구들의 제한점과 후속 연구의 방향을 제시한다.

Keywords

References

  1. Abraham, A. (2013). The promises and perils of the neuroscience of creativity. Frontiers in human neuroscience, 7: 246.
  2. Abraham, A., & Windmann, S. (2007). Creative cognition: The diverse operations and the prospect of applying a cognitive neuroscience perspective. Methods, 42(1), 38-48. https://doi.org/10.1016/j.ymeth.2006.12.007
  3. Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). "Aha!": The neural correlates of verbal insight solutions. Human brain mapping, 30(3), 908-916. https://doi.org/10.1002/hbm.20554
  4. Aziz-Zadeh, L., Liew, S. L., & Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social cognitive and affective neuroscience, 8(4), 475-480. https://doi.org/10.1093/scan/nss021
  5. Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: mind wandering facilitates creative incubation. Psychological science, 23(10), 1117. https://doi.org/10.1177/0956797612446024
  6. Barbey, A. K., Colom, R., & Grafman, J. (2013). Architecture of cognitive flexibility revealed by lesion mapping. Neuroimage, 82, 547-554. https://doi.org/10.1016/j.neuroimage.2013.05.087
  7. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience: exploring the brain. Hagerstwon, MD: Lippincott Williams & Wilkins.
  8. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., ... & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92-98. https://doi.org/10.1016/j.neuropsychologia.2014.09.019
  9. Bechtereva, N. P., Korotkov, A. D., Pakhomov, S., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53(1), 11-20. https://doi.org/10.1016/j.ijpsycho.2004.01.001
  10. Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., ... & Neubauer, A. C. (2014). Creating metaphors: The neural basis of figurative language production. NeuroImage, 90, 99-106. https://doi.org/10.1016/j.neuroimage.2013.12.046
  11. Bengtsson, S. L., Csikszentmihalyi, M., & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of cognitive neuroscience, 19(5), 830-842. https://doi.org/10.1162/jocn.2007.19.5.830
  12. Bhattacharya, J., & Petsche, H. (2005). Drawing on mind's canvas: Differences in cortical integration patterns between artists and non-artists. Human brain mapping, 26(1), 1-14. https://doi.org/10.1002/hbm.20104
  13. Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in cognitive sciences, 9(7), 322-328. https://doi.org/10.1016/j.tics.2005.05.012
  14. Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239-249.
  15. Carter, C. S., Botvinick, M. M., & Cohen, J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 10(1), 49-58.
  16. Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980-1987. https://doi.org/10.1162/jocn.2008.21143
  17. Chermahini, S. A., & Hommel, B. (2010). The (b) link between creativity and dopamine: spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458-465. https://doi.org/10.1016/j.cognition.2010.03.007
  18. Cho, S., Moody, T. D., Fernandino, L., Mumford, J. A., Poldrack, R. A., Cannon, T. D., Knowlton, B. J., Holyoak, K. J. (2010). Common and dissociable prefrontal lociassociated with component mechanisms of analogical reasoning. Cereb Cortex. 20(3), 524-33. https://doi.org/10.1093/cercor/bhp121
  19. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., & Gabrieli, J. D. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage, 14, 1136-1149. https://doi.org/10.1006/nimg.2001.0922
  20. Christoff, K., Ream, J. M., Geddes, L. P. T., & Gabrieli, J. D. E. (2003). Evaluating self-generated information: Anterior prefrontal contributions to human cognition. Behavioral Neuroscience, 117(6), 1161-1168. https://doi.org/10.1037/0735-7044.117.6.1161
  21. Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thompson-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive neuroscience, 4(2), 81-89. https://doi.org/10.1080/17588928.2013.768221
  22. Chrysikou, E. G., & Thompson-Schill, S. L. (2011). Dissociable brain states linked to common and creative object use. Human brain mapping, 32(4), 665-675. https://doi.org/10.1002/hbm.21056
  23. Chi, R. P., & Snyder, A. W. (2011). Facilitate insight by non-invasive brain stimulation. PloS one, 6(2), e16655. https://doi.org/10.1371/journal.pone.0016655
  24. Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol, 10(3), e1001293. https://doi.org/10.1371/journal.pbio.1001293
  25. Costa PT, McCrae RR. (1992). Professional Manual: Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI). Odessa, FL: Psychological Assessment Resources.
  26. Cropley, A. (2006). In praise of convergent thinking. Creativity research journal, 18(3), 391-404. https://doi.org/10.1207/s15326934crj1803_13
  27. Darsaud, A., Wagner, U., Balteau, E., Desseilles, M., Sterpenich, V., Vandewalle, G., ... & Maquet, P. (2011). Neural precursors of delayed insight. Journal of cognitive neuroscience, 23(8), 1900-1910. https://doi.org/10.1162/jocn.2010.21550
  28. Danko, S. G., Starchenko, M. G., & Bechtereva, N. P. (2003). EEG local and spatial synchronization during a test on the insight strategy of solving creative verbal tasks. Human Physiology, 29(4), 502-504. https://doi.org/10.1023/A:1024950028210
  29. Davis, M. A. (2009). Understanding the relationship between mood and creativity: A meta-analysis. Organizational behavior and human decision processes, 108(1), 25-38. https://doi.org/10.1016/j.obhdp.2008.04.001
  30. De Dreu, C. K., Nijstad, B. A., & Baas, M. (2011). Behavioral activation links to creativity because of increased cognitive flexibility. Social Psychological and Personality Science, 2(1), 72-80. https://doi.org/10.1177/1948550610381789
  31. DeYoung, C. G. (2006). Higher-order factors of the Big Five in a multi-informant sample. Journal of Personality and Social Psychology, 91, 1138-1151. https://doi.org/10.1037/0022-3514.91.6.1138
  32. Dietrich, A., & Kanso, R. (2010). A Review of EEG, ERP, and Neuroimaging Studies of Creativity and Insight. Psychological Bulletin, 136(5), 822-848. https://doi.org/10.1037/a0019749
  33. Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 1246-1256. https://doi.org/10.1037/0022-3514.73.6.1246
  34. Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59(2), 1783-1794. https://doi.org/10.1016/j.neuroimage.2011.08.008
  35. Ericsson, K. A. & Lehmann, A. C. (1999). Expertise. In M.A. Runco & S. R. Pritzker (Ed.), Encyclopedia of creativity, Vol. 1 (pp. 695-707). San Diego, Academic Press.
  36. Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290-309. https://doi.org/10.1207/s15327957pspr0204_5
  37. Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111-123. https://doi.org/10.1016/j.neubiorev.2012.12.002
  38. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., ... & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human brain mapping, 30(3), 734-748. https://doi.org/10.1002/hbm.20538
  39. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. Neuroimage, 52(4), 1687-1695. https://doi.org/10.1016/j.neuroimage.2010.05.072
  40. Fink, A., Koschutnig, K., Benedek, M., Reishofer, G., Ischebeck, A., Weiss, E. M., & Ebner, F. (2012). Stimulating creativity via the exposure to other people's ideas. Human brain mapping, 33(11), 2603-2610. https://doi.org/10.1002/hbm.21387
  41. Forster, J., Friedman, R. S., & Liberman, N. (2004). Temporal construal effects on abstract and concrete thinking: consequences for insight and creative cognition. Journal of personality and social psychology, 87(2), 177. https://doi.org/10.1037/0022-3514.87.2.177
  42. Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., ... & Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental brain research, 166(1), 23-30. https://doi.org/10.1007/s00221-005-2334-6
  43. Gallate, J., Wong, C., Ellwood, S., Roring, R. W., & Snyder, A. (2012). Creative people use nonconscious processes to their advantage. Creativity Research Journal, 24(2-3), 146-151. https://doi.org/10.1080/10400419.2012.677282
  44. Gilhooly, K. J., Georgiou, G., & Devery, U. (2013). Incubation and creativity: Do something different. Thinking & Reasoning, 19(2), 137-149. https://doi.org/10.1080/13546783.2012.749812
  45. Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125-137. https://doi.org/10.1016/j.brainres.2006.04.024
  46. Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012a). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(2), 264. https://doi.org/10.1037/a0025764
  47. Green, A., Cohen, M., Kim, J., & Gray, J. R. (2012b). An Explicit Cue Improves Creative Analogical Reasoning. Intelligence, 40, 598-603. https://doi.org/10.1016/j.intell.2012.08.005
  48. Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487. https://doi.org/10.1097/00001756-200212200-00022
  49. Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444-454. https://doi.org/10.1037/h0063487
  50. Guilford, J. P. (1967). The nature of human intelligence. New York, NY, US: McGraw-Hill.
  51. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685-694. https://doi.org/10.1038/35094500
  52. Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803-865.
  53. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.
  54. Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25(1), 240-250. https://doi.org/10.1016/j.cogbrainres.2005.05.013
  55. Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171-178. https://doi.org/10.1016/j.intell.2015.01.012
  56. Jausovec, N., & Jausovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36(1), 73-88. https://doi.org/10.1016/S0167-8760(99)00113-0
  57. Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., & Anderson, A. W. (2003). FMRI evidence for an organization of prefrontal cortex by both type of process and type of information. Cereb Cortex, 13(3), 265-273. https://doi.org/10.1093/cercor/13.3.265
  58. Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in human neuroscience, 7.
  59. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS biology, 2(4), 500-510.
  60. Kaufmann, G. (2003). Expanding the mood-creativity equation. Creativity Research Journal, 15(2-3), 131-135. https://doi.org/10.1080/10400419.2003.9651405
  61. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibitiontiming hypothesis. Brain research reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  62. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-890. https://doi.org/10.1111/j.1467-9280.2006.01798.x
  63. Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. The Cambridge handbook of creativity, 20-47.
  64. Krause, B., & Kadosh, R. C. (2013). Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Developmental cognitive neuroscience, 6, 176-194. https://doi.org/10.1016/j.dcn.2013.04.001
  65. Kris, E. (1952). Psychoanalytic explorations in art. New York: International Universities Press.
  66. Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cerebral Cortex, 12(5), 477-485. https://doi.org/10.1093/cercor/12.5.477
  67. Limb, C. J., & Braun, A. R. (2008). Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation. PLoS ONE, 3(2), e1679. https://doi.org/10.1371/journal.pone.0001679
  68. Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., ... & Liu, J. (2015). Brain structure links trait creativity to openness to experience. Social cognitive and affective neuroscience, 10(2), 191-198. https://doi.org/10.1093/scan/nsu041
  69. Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., ... & Braun, A. R. (2012). Neural correlates of lyrical improvisation: an fMRI study of freestyle rap. Scientific reports, 2.
  70. Lotze, M., Erhard, K., Neumann, N., Eickhoff, S. B., & Langner, R. (2014). Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing. Frontiers in human neuroscience, 8.
  71. Luo, J., & Niki, K. (2003). Function of hippocampus in "insight" of problem solving. Hippocampus, 13(3), 316-323. https://doi.org/10.1002/hipo.10069
  72. Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G., & Xu, S. (2003). The neural substrate of analogical reasoning: An fMRI study. Cognitive Brain Research, 17(3), 527-534. https://doi.org/10.1016/S0926-6410(03)00167-8
  73. Martindale, C. (1999). Biological bases of creativity. In R. Sternberg (Ed.), Handbook of creativity. Cambridge, UK: Cambridge University Press.
  74. Mai, X. Q., Luo, J., Wu, J. H., & Luo, Y. J. (2004). "Aha!" effects in a guessing riddle task: An event related potential study. Human brain mapping, 22(4), 261-270. https://doi.org/10.1002/hbm.20030
  75. Maier, N. R. (1930). Reasoning in humans. I. On direction. Journal of comparative Psychology, 10(2), 115. https://doi.org/10.1037/h0073232
  76. Mednick, S. (1962). The associative basis of the creative process.Psychological review, 69(3), 220. https://doi.org/10.1037/h0048850
  77. Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance1. Journal of Personality, 44(2), 341-369. https://doi.org/10.1111/j.1467-6494.1976.tb00127.x
  78. Novick, L. R., & Sherman, S. J. (2003). On the nature of insight solutions: Evidence from skill differences in anagram solution. The Quarterly Journal of Experimental Psychology: Section A, 56(2), 351-382. https://doi.org/10.1080/02724980244000288
  79. Osborn, A. F. (1957). Applied Imagination: Principles and procedures of creative problemsolving. 1957. New York: Charles Scribner's Sons.
  80. Paulus, P. B. and Brown, V. R. (2007), Toward More Creative and Innovative Group Idea Generation: A Cognitive-Social-Motivational Perspective of Brainstorming. Social and Personality Psychology Compass, 1: 248-265. https://doi.org/10.1111/j.1751-9004.2007.00006.x
  81. Pfurtscheller, G., Stancak, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band-an electrophysiological correlate of cortical idling: a review. International journal of psychophysiology, 24(1), 39-46. https://doi.org/10.1016/S0167-8760(96)00066-9
  82. Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology, 110(11), 1842-1857. https://doi.org/10.1016/S1388-2457(99)00141-8
  83. Prabhakaran, R., Green, A. E., & Gray, J. R. (2014). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior research methods, 46(3), 641-659. https://doi.org/10.3758/s13428-013-0401-7
  84. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33(1), 43-63. https://doi.org/10.1006/cogp.1997.0659
  85. Qiu, J., Li, H., Jou, J., Wu, Z., & Zhang, Q. (2008). Spatiotemporal cortical activation underlies mental preparation for successful riddle solving: an event-related potential study. Experimental brain research, 186(4), 629-634. https://doi.org/10.1007/s00221-008-1270-7
  86. Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., & Zhang, Q. (2008). The neural basis of insight problem solving: An event-related potential study. Brain and cognition, 68(1), 100-106. https://doi.org/10.1016/j.bandc.2008.03.004
  87. Raven, J., Raven, J. C., & Court, J. H. (1998). Raven manual: Section 1, general overview. Oxford, England: Oxford Psychologists Press.
  88. Razumnikova, O. M., Volf, N. V., & Tarasova, I. V. (2009). Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity. Human physiology, 35(3), 285-294. https://doi.org/10.1134/S0362119709030049
  89. Ritter, S. M., & Dijksterhuis, A. (2014). Creativity-the unconscious foundations of the incubation period. Frontiers in Human Neuroscience, 8, 215.
  90. Ritter, S. M., Strick, M., Bos, M. W., Van Baaren, R. B., & Dijksterhuis, A. P. (2012). Good morning creativity: task reactivation during sleep enhances beneficial effect of sleep on creative performance. Journal of sleep research, 21(6), 643-647. https://doi.org/10.1111/j.1365-2869.2012.01006.x
  91. Rose, M., Haider, H., & Buchel, C. (2005). Unconscious detection of implicit expectancies. Journal of Cognitive Neuroscience, 17(6), 918-927. https://doi.org/10.1162/0898929054021193
  92. Sandkuhler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS One, 3(1), e1459. https://doi.org/10.1371/journal.pone.0001459
  93. Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during topdown processing in a working memory task. Human brain mapping, 26(2), 148-155. https://doi.org/10.1002/hbm.20150
  94. Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human brain mapping, 34(5), 1088-1101. https://doi.org/10.1002/hbm.21493
  95. Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178-185. https://doi.org/10.1016/j.neuropsychologia.2010.11.020
  96. Sheth, B. R., Sandkuhler, S., & Bhattacharya, J. (2009). Posterior beta and anterior gamma oscillations predict cognitive insight. Journal of Cognitive Neuroscience, 21(7), 1269-1279. https://doi.org/10.1162/jocn.2009.21069
  97. Silvia, P. J., Nusbaum, E. C., Berg, C., Martin, C., & O'Connor, A. (2009). Openness to experience, plasticity, and creativity: Exploring lower-order, high-order, and interactive effects. Journal of Research in Personality, 43(6), 1087-1090. https://doi.org/10.1016/j.jrp.2009.04.015
  98. Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36(2), 311-322. https://doi.org/10.1080/00223980.1953.9712897
  99. Sternberg, R. J., & Lubart, T. I. (1993). Investing in creativity. Psychological inquiry, 4(3), 229-232. https://doi.org/10.1207/s15327965pli0403_16
  100. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921-2929. https://doi.org/10.1093/cercor/bhr371
  101. Torrance, E. P. (1974). Torrance Tests of Creative Thinking: norms and technical manual. Bensonville, IL: Scholastic testing services.
  102. Vartanian, O. (2012). Dissociable neural systems for analogy and metaphor: Implications for the neuroscience of creativity. British Journal of Psychology, 103(3), 302-316. https://doi.org/10.1111/j.2044-8295.2011.02073.x
  103. Von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International journal of psychophysiology, 38(3), 301-313. https://doi.org/10.1016/S0167-8760(00)00172-0
  104. Ward, T. B. (1994). Structured imagination: The role of conceptual structure in exemplar generation, Cognitive Psychology, 27(1), 1-40. https://doi.org/10.1006/cogp.1994.1010
  105. Williams FE. (1993). Creativity Assessment Packet Examiner's Manual. Austin, TX: PRO-ED.
  106. Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. cortex, 51, 92-102. https://doi.org/10.1016/j.cortex.2013.09.004
  107. Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2008). Brain is to thought as stomach is to ??: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20(4), 682-693. https://doi.org/10.1162/jocn.2008.20055