나노 구조 열전 소재의 최근 연구 동향

  • 발행 : 2015.12.30

초록

키워드

참고문헌

  1. G. J. Snyder and E. S. Toberer, "Complex Thermoe lectric Materials," Nat. Mater., 7 105-14 (2008). https://doi.org/10.1038/nmat2090
  2. L. D. Hicks and M. S. Dresselhaus, "Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit," Phys. Rev. B, 47 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727
  3. J. P. Heremans, V. J.ovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 554-57 (2008).
  4. A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annu. Rev. Mater. Res., 41 399-431 (2011). https://doi.org/10.1146/annurev-matsci-062910-100445
  5. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science, 297 2229-32 (2002). https://doi.org/10.1126/science.1072886
  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn., "Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit," Nature, 413 597-602 (2001). https://doi.org/10.1038/35098012
  7. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced Thermoelectric Performance of Rough Silicon Nanowires," Nature, 451 163-67 (2008). https://doi.org/10.1038/nature06381
  8. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-. Yu, W. A. Goddard III, and J. R. Heath, "Silicon Nanowires as Efficient Thermoelectric Materials," Nature, 451 168-71 (2008). https://doi.org/10.1038/nature06458
  9. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and Old Concepts in Thermoelectric Materials," Angew. Chem. Int. Ed., 48 8616-39 (2009). https://doi.org/10.1002/anie.200900598
  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan,. A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science, 320 634-38 (2008). https://doi.org/10.1126/science.1156446
  11. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in Nanostructured ptype Silicon Germanium Bulk Alloys," Nano Lett., 8 4670-74 (2008). https://doi.org/10.1021/nl8026795
  12. S. I. Kim, K. H. Lee, H. A Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, "Dense Dislocation Arrays Embedded in Grain Boundaries for High-Performance Bulk Thermoelectrics," Science, 348 109-14 (2015). https://doi.org/10.1126/science.aaa4166
  13. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures," Nature 489 414-18 (2012). https://doi.org/10.1038/nature11439