DOI QR코드

DOI QR Code

LiBr 수용액으로 용해시켜 제조한 거대억새 홀로셀룰로오스 용해 및 재생 필름특성

Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution

  • 양지욱 (동국대학교 바이오환경과학과) ;
  • 권구중 (동국대학교 바이오환경과학과) ;
  • 황교정 (동국대학교 바이오환경과학과) ;
  • 황원중 (국립산림과학원 임산공학부 목재가공과) ;
  • 황재현 (동국대학교 식품산업관리학과) ;
  • 김대영 (동국대학교 바이오환경과학과)
  • Yang, Ji-Wook (Dept. of Biological and Enviromental Science, Dongguk University) ;
  • Kwon, Gu-Joong (Dept. of Biological and Enviromental Science, Dongguk University) ;
  • Hwang, Kyo-Jung (Dept. of Biological and Enviromental Science, Dongguk University) ;
  • Hwang, Won-Jung (Dept. of Forest Products, Korea Forest Research Institue) ;
  • Hwang, Jae-Hyun (Dept. of Food Industrial Management, Dongguk University) ;
  • Kim, Dae-Young (Dept. of Biological and Enviromental Science, Dongguk University)
  • 투고 : 2015.11.09
  • 심사 : 2015.12.13
  • 발행 : 2015.12.30

초록

In this study, dissolution characteristics of 60% LiBr aqueous solution for Miscanthus sinensis holocellulose in accordance with heating time and characteristics of regenerated films were analyzed. Miscanthus sinensis holocellulose was made by peracetic acid method. During the dissolution of 60% LiBr solution for the holocellulose, the dissolution was started from the tip of the cellulose fiber after about 7 minutes, and proceeded as it swollen like a balloon. A lot of Si was identified by analyzing hollocellulose regenerated film through SEM/EDS. Cross section of regenerated film as dissolution time till 40 minutes of dissolution showed multilayered structure and fiber orientation. But after 40 minutes, multilayered structure and fiber orientation was not observed. The crystal structure of the holecellulose was transformed cellulose I into cellulose II. Therefore, dissolution for 20 minutes with 60% LiBr solution in the condition of $190^{\circ}C$ hot plate was shown as an optimum condition to manufacture the holocellulose regenerated film.

키워드

참고문헌

  1. Ray, S. S. and Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world, Progress in Materials Science 50(8):962-1079 (2005). https://doi.org/10.1016/j.pmatsci.2005.05.002
  2. Park, Y. K., Jeon, J. K., Kim, S. D., and Kim, J. S., Bio-oil from rice straw by pyrolysis using fluidized bed and char removal system, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 49(2):801 (2004).
  3. Lee, J. J., Production of fuels from an agricultural by-product biomass, Trans. of the Korean Hydrogen and New Energy Society 18(1):85-94 (2007).
  4. Kang, K., Hong, S. G., Ji, K. J., Choi, J. Y., Lee, H. H., Kim, H. J., and Park, S. J., Monitoring biota in giant Miscanthus fields, Journal of the Korean Society of Agricultural Engineers 56(1):89-99 (2014). https://doi.org/10.5389/KSAE.2014.56.1.089
  5. Moon, Y. H., Koo, B. C., Choi, Y. H., Ahn, S. H., Bark, S. T., Cha, Y. L., An, G. H.. Kim, J. K., and Suh, S. J., Development of "Miscanthus" the promising bioenergy crop, Korean Journal of Weed Science 30(4):330-339 (2010). https://doi.org/10.5660/KJWS.2010.30.4.330
  6. Miguez, F. E., Villamil, M. B., Long, S. P., and Bollero, G. A., Meta-analysis of the effects of management factors on Miscanthus giganteus growth and biomass production, Agricultural and Forest Meteorology 148(8-9):1280-1292 (2008). https://doi.org/10.1016/j.agrformet.2008.03.010
  7. Sen, S., Martin, J. D., and Argyropoulos, D. S., Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates, ACS Sustainable Chemistry & Engineering 1(8):858-870 (2013). https://doi.org/10.1021/sc400085a
  8. Yang, Y. J., Shin, J. M., Kang, T. H., Kimura, S., Wada, M., and Kim, U. J.. Cellulose dissolution in aqueous lithium bromide solutions, Cellulose 21:1175-1181 (2014). https://doi.org/10.1007/s10570-014-0183-9
  9. Kim, J. Y., Oh, S. Y., Hwang, H. W., Moon, Y. H., and Choi, J. W., Evaluation of primary thermal degradation feature of M. sacchariflorus after removing inorganic compounds using distilled water, J. Korean Wood Sci. & Tech. 41(4):276-286 (2013). https://doi.org/10.5658/WOOD.2013.41.4.276
  10. Jung, Y. J., An, B. J., Hwang, D. Y., Kim, H. D., Park, S. M., Cho, H., and Kim, H. S., Preparation and properties of regenerated cellulosic biomaterial made from Styela clava tunics, Biomaterials Research 12(2):71-76 (2008).
  11. Muhammad, N., Man, Z., Khalil, M. A. B., Tan, I. M., and Maitra, S.. Studies on the thermal degradation behavior of ionic liquid regenerated cellulose, Waste Biomass Valor 1:315-321 (2010). https://doi.org/10.1007/s12649-010-9026-6
  12. Taeger, E., Franz, H., and Mertel, H., Problems of carbon disulphide free deformation of cellulose to cellulose textile threads by means of N-methylmorpholine-N-oxide, formulas, fibrous materials (Probleme der schwefelkohlenstofffreien verformung von zellulose zu textilen zellulosefaden mittels N-methylmorpholin- N-oxids, formeln, faserstoffe), Fertigware 4:14-22 (1985).
  13. Buijtenhuijs, F. A., Abbas, M., and Witteveen, A. J., The degradation and stabilization of cellulose dissolved in N-methylmorpholine- N-oxide (NMMO), Papier 40:615-619 (1986).
  14. Lang, H., Laskowski, I., Lukanoff, B., Schleicher, H., Mertel, H., Franz, H., and Taeger, E., Study of solutions of cellulose in N-methylmorpholine N-oxide (MMNO), Cellulose Chemistry and Technology 20(3):289-301 (1986).

피인용 문헌

  1. Cellulose–Chitosan Antibacterial Composite Films Prepared from LiBr Solution vol.10, pp.10, 2018, https://doi.org/10.3390/polym10101058
  2. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by cellulosic aerogels during smoked pork sausage manufacture vol.124, pp.None, 2015, https://doi.org/10.1016/j.foodcont.2021.107878