DOI QR코드

DOI QR Code

DC μ-Grid 기반 배터리 충/방전 시스템의 에너지 효율에 관한 연구

A Study on Energy Efficiency of Battery Charge/Discharge System based on DC μ-Grid

  • 여성대 (서울과학기술대학교 NID융합기술대학원) ;
  • 김종운 (서울과학기술대학교 NID융합기술대학원) ;
  • 이경량 (서울과학기술대학교 NID융합기술대학원) ;
  • 한철규 ;
  • 류태형 ;
  • 김경화 (서울과학기술대학교 전기정보공학과) ;
  • 김성권 (서울과학기술대학교 NID융합기술대학원)
  • 투고 : 2015.11.03
  • 심사 : 2015.12.24
  • 발행 : 2015.12.31

초록

Li-ion 배터리를 생산하는데 있어서 충/방전을 통한 formation 과정이 필요하다. 이 과정에서 방전기의 부하 저항을 통해 방전하게 되는데 이때 에너지 손실이 발생한다. 따라서 본 논문에서는 DC ${\mu}-Grid$ 기반의 충/방전 시스템에서 배터리를 효율적으로 운영하는 방안에 대해 연구하였다. 컴퓨터 시뮬레이션 결과, DC ${\mu}-Grid$ 기반의 충/방전 시스템에서 충전 배터리 set 3개 기준 대비 방전 배터리 set의 수가 133%를 초과하게 되면 망 전압이 안정화되는 과정에서 발생하는 전압 fluctuation 폭을 초과하기 때문에 시스템에 치명적인 손상을 야기한다. 따라서 충전 배터리 set 3개 기준 대비 방전 배터리 set의 수를 133%까지 운영할 수 있으며 획기적인 에너지 절감 효과를 확인할 수 있었다.

Formation process through charge/discharge operation is needed in manufacturing Li-ion battery. In the process battery is discharged by a load resistor of discharger. Here, energy losses happen. Therefore, in this paper, the efficient energy operation of battery is studied in the charge/discharge system based on DC ${\mu}-Grid$. A result of computer simulation shows that if in the charge/discharge system based on DC ${\mu}-Grid$, the number of discharge batteries in comparison with three charge battery sets exceeds 133%, voltage fluctuation that occurs while the grid voltage stabilizes, which makes the system fatal. Therefore, it was demonstrated that a remarkable energy saving effect could be achieved when the number of discharge battery set is maintained to be 133% in comparison with three charge battery sets.

키워드

참고문헌

  1. Y. Jung, "A Study on Generalized Output Capacitor Ripple Current Equation of Interleaved Boost Converter," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1429-1435. https://doi.org/10.13067/JKIECS.2012.7.6.1429
  2. S. Kim, K. Lee, S. Yeo, S. Hong, and Y. Park, "Implementation of Successive Approximate Register typed A/D Converter for a Monitored Battery Voltage Conversion," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 2, 2011, pp. 256-261.
  3. Y. Ko, "A Study on the Application of Energy Storage System (ESS) to the Power System," Conf. of Korea Institute of Electronic Communication Sciences, Cheonan, Korea, Nov. 2014, pp. 233-236.
  4. J. Nam, J. Choi, S. Kim, H. Hwang, and J. Kim, "A Study on SOC Algorithm and Design of Battery ECU for Hybrid Electric Vehicle," The Trans. of the Korea Institute of Power Electronics, vol. 9, no. 4, 2004, pp. 319-325.
  5. M. Cho, D. Nah, S. Kil, and S. Kim, "Li-Ion Traction Batteries for All-Electric Vehicle," J. of Energy Engineering, vol. 20, no. 2, 2011, pp. 109-122. https://doi.org/10.5855/ENERGY.2011.20.2.109
  6. S. You, J. Jung, K. Cheong, and J. Go, "Numerical Simulation of Lithium-Ion Batteries for Electric Vehicles," The Trans. of the Korean Society of Mechanical Engineers-B, vol. 35, no. 6, 2011, pp. 649-656. https://doi.org/10.3795/KSME-B.2011.35.6.649
  7. Z. Zhang, M. Zhong, F. Liu, F. Zhong, and F. Wu, "Heat dissipation from a Ni-MH battery during charge and discharge with a secondary electrode reaction," J. of Power Sources, vol. 70, issue 2, 1998, pp. 276-280. https://doi.org/10.1016/S0378-7753(97)02687-6
  8. H. Vaidyanathan, W. H. Kelly, and G. Rao, "Heat dissipation in a lithium ion cell," J. of Power Sources, vol. 93, issue 1-2, 2001, pp. 112-122. https://doi.org/10.1016/S0378-7753(00)00550-4
  9. B. Han and J. Lee, "Operation Analysis Simulation Model of DC Micro-grid," The Trans. of the Korean Institute of Power Electronics, vol. 15, no. 2, 2010, pp. 36-42.
  10. J. Lee, G. Kwon, B. Han, and H. Cha, "Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation," The Trans. of The Korean Institute of Electrical Engineers, vol. 58, no. 11, 2009, pp. 2175-2184.