DOI QR코드

DOI QR Code

Dynamic Frequency Reuse Scheme Based on Traffic Load Ratio for Heterogeneous Cellular Networks

이종 셀룰러 네트워크 환경에서 트래픽 비율에 따른 동적 주파수 재사용 기법

  • Received : 2015.09.06
  • Accepted : 2015.12.07
  • Published : 2015.12.30

Abstract

Overcoming inter-cell interference and spectrum scarcity are major issues in heterogeneous cellular networks. Static Frequency reuse schemes have been proposed as an effective way to manage the spectrum and reduce ICI(Inter cell Interference) in cellular networks. In a kind of static frequency reuse scheme, the allocations of transmission power and subcarriers in each cell are fixed prior to system deployment. This limits the potential performance of the static frequency reuse scheme. Also, most of dynamic frequency reuse schemes did not consider small cell and the network environment when the traffic load of each cell is heavy and non-uniform. In this paper, we propose an inter-cell resource allocation algorithm that dynamically optimizes subcarrier allocations for the multi-cell heterogeneous networks. The proposed dynamic frequency reuse scheme first finds the subcarrier usage in each cell-edge by using the exhaustive search and allocates subcarrier for all the cells except small cells. After that it allocates subcarrier for the small cell and then iteratively repeats the process. Proposed dynamic frequency reuse scheme performs better than previous frequency reuse schemes in terms of the throughput by improving the spectral efficiency due to it is able to adapt the network environment immediately when the traffic load of each cell is heavy and non-uniform.

이종 셀룰러 네트워크 환경에서 셀 간 간섭 문제와 부족한 주파수자원 환경을 극복하는 것은 통신 성능을 향상시키기 위한 주요 방법 중 하나이다. 정적 주파수 재사용 방식은 한정된 주파수 자원 환경에서 셀 간 간섭 문제를 효율적으로 해결하기 위해 제안된 방식이다. 이러한 방식은 미리 정해진 파워와 대역으로 주파수를 할당하기 때문에 네트워크의 통신 성능향상에 제한이 있다. 또한 기존의 동적 주파수 재사용 방식들은 대부분의 경우 셀 안에 존재할 수 있는 스몰 셀 환경을 고려하지 않고 있고, 네트워크의 트래픽 부하기 심하고 불균일한 환경에 특화되어 있지 않다. 제안한 동적 주파수 재사용 기법은 다중 이종 셀룰러 네트워크 환경에서 네트워크 환경에 적응하여 각 셀의 트래픽 비율에 알맞게 동적으로 주파수를 할당한다. 제안한 기법은 먼저 각 셀 Edge의 PRB 사용량을 수집하고 이에 적응하여 스몰 셀을 제외한 전 셀 지역에 주파수를 재 할당한다. 그 후 이를 고려하여 스몰 셀을 위한 주파수를 할당하고 이를 반복하여 전체 셀의 주파수 자원을 할당한다. 해당 기법은 네트워크의 트래픽 부하가 심하고 불균일할 때 스몰 셀 환경을 위해 각 셀의 트래픽 부하에 적합한 주파수 자원을 할당시킴으로써, 기존의 방식에 비해 Spectral Efficiency 성능을 향상시켜 결과적으로 시스템의 Throughput 성능을 향상시킨다.

Keywords

References

  1. S. Deb, P. Monogioudis, J. Miernik, and J. Seymour, "Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets," IEEE/ACM Trans. Networking (TON), vol. 22, no. 1, pp. 137-150, Feb. 2014. https://doi.org/10.1109/TNET.2013.2246820
  2. T. Tran, Y. Shin, and O. Shin, "Overview of enabling technologies for 3GPP LTEAdvanced," EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1, pp. 1-12, Oct. 2012. https://doi.org/10.1186/1687-1499-2012-1
  3. O. Fratu, A. Vulpe, R. Craciunescu, and S. Halunga, "Small cells in cellular networks: Challenges of future HetNets, wireless personal communications," Wirel. Pers. Commun., vol. 78, no. 3, pp. 1613-1627, Oct. 2014. https://doi.org/10.1007/s11277-014-1906-9
  4. M. H. Monhsini, S.-Y. Kim, and C.-H. Cho, "Performance analysis of a cellular networks using power control based frequency reuse partitioning," J. KICS, vol. 40, no.3, pp. 559-567, Mar. 2015. https://doi.org/10.7840/kics.2015.40.3.559
  5. S. Y. Park, J. Y. Kim, and D. H. Kim, "Decentralized frequency reuse scheme best-effort services in downlink small-cell network," J. KICS, vol. 38, no. 4, pp. 360-370, Apr. 2015.
  6. H. Kim, Y. Jo, J. Lim, and D. Hong, "Interference mitigation by joint employment of power control and almost blank subframes in heterogeneous networks," J. KICS, vol. 39, no. 1, pp. 62-64, Jan. 2014.
  7. M. Necker, "Interference coordination in cellular OFDMA networks," IEEE Network, vol. 22, no. 6, pp. 12-19, Dec. 2008. https://doi.org/10.1109/MNET.2008.4694169
  8. G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, "Interference coordination and cancellation for 4G networks," IEEE Commun. Mag., vol. 47, no. 4, pp. 74-81, Apr. 2009. https://doi.org/10.1109/MCOM.2009.4907410
  9. D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, "LTE: the evolution of mobile broadband - [LTE part II: 3GPP release 8]," IEEE Commun. Mag., vol. 47, no. 4, pp. 44-51, Apr. 2009. https://doi.org/10.1109/MCOM.2009.4907406
  10. H. Sari, S. Sezginer, and E. Vivier, "Full frequency reuse in mobile WiMAX and LTE networks with sectored cells," in IEEE Mob. WiMAX Symp., pp. 42-45, Napa valley CA, USA, Jul. 2009.
  11. A. Racz, N. Reider, and G. Fodor, "On the impact of inter-cell interference in LTE," in IEEE Global Telecommun. Conf., pp. 1-6, New orleans LO, USA, Nov. 2008,
  12. 3GPP and Nokia, OFDMA downlink inter-cell interference mitigation, in R1-060291, RAN WG1#44, Denver, Colorado, 2006.
  13. 3GPP; Huawei, Soft frequency reuse scheme for UTRAN LTE, R1-050507, May 2005.
  14. V. H. MacDonald, "The cellular concept," Bell System Technical J., vol. 58, no. 1, pp. 15-41, Jan. 1979. https://doi.org/10.1002/j.1538-7305.1979.tb02209.x
  15. Huaiwei, Soft Frequency Reuse Scheme for UTRAN LTE, R1-050507, 3GPP TSG-RAN WG1 Meeting #41, Greece, May. 2005.
  16. M. Rahman, H. Yanikomeroglu, and W. Wong, "Interference Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System," in Proc. IEEE Wirel. Commun. and Netw. Conf., pp. 1-6, Budapest, Hungary, Apr. 2009.
  17. T. D. Novlan, R. K. Ganti, A. Ghosh, and J. G. Andrews, "Analytical evaluation of fractional frequency reuse for OFDMA cellular networks," IEEE Trans. Wirel. Commun., vol. 10, no. 12, pp. 4294-4305, Dec. 2011. https://doi.org/10.1109/TWC.2011.100611.110181
  18. Z. Xunyong, H. Che, J. Lingge, and X. Jing, "Inter-cell interference coordination based on softer frequency reuse in OFDMA cellular systems," in Proc. Int. Neur. Netw. Signal Process. Conf., pp. 270-275, Nanjing, China, Jun. 2008.
  19. M. M. Wang and T. Ji, "Dynamic resource allocation for interference management in orthogonal frequency division multiple access cellular communications," IET Commun., vol. 4, no. 6, pp. 675-682, Apr. 2010. https://doi.org/10.1049/iet-com.2009.0170
  20. F. Bernardo, R. Agusti, J. Perez-Romero, and O. Sallent, "A novel framework for dynamic spectrum management in multicell OFDMA networks based on reinforcement learning," in Proc. IEEE WCNC, pp. 1520-1525, Piscataway, NJ, USA, Apr. 2009.
  21. A. L. Stolyar and H. Viswanathan, "Selforganizing dynamic fractional frequency reuse in OFDMA systems," in Proc. IEEE 27th INFOCOM, pp. 691-699, Phoenix AZ, USA, Apr. 2008.
  22. A. L. Stolyar and H. Viswanathan, "Selforganizing dynamic fractional frequency reuse for best-effort traffic through distributed intercell coordination," in Proc. IEEE INFOCOM, pp. 1287-1295, Rio de Janeiro, Brazil, Apr. 2009.
  23. 3GPP TR 36.814, Further Advancements for E-UTRA Physical Layer Aspects, v1.5.2, Dec. 2009.
  24. Y. Zhao, X. Fang, X. Hu, Z. Zhao, and Y. Long, "Fractional frequency reuse schemes and performance evaluation for OFDMA multi-hop cellular networks," in Proc. TridentCom, pp. 1-5, Washington DC, USA, Apr. 2009.
  25. W. Lee, M. Nguyen, and H. Lee, "A resource allocation algorithm and system architecture to extend the cell coverage and alleviate the intercell interference," in Proc. IEEE Symp. Comput. Commun., pp. 222-227, Marrakech, Moroco, Jul. 2008.
  26. J. Liu, D. Wang, J. Pang, J. Wang, and G. Shen, "Inter-cell interference coordination based on soft frequency reuse for relay enhanced cellular network," IEEE PIMRC 2010, pp. 2304-2308, Istanbul, Turkey, Sept. 2010.
  27. R1-080361, Additional RSRP reporting trigger for ICIC, Ericsson, 3GPP TSG RAN WG1 Meeting #51b, Sevilla, Spain, Jan. 2008.
  28. 3GPP, Description and simulations of interference management technique for OFDMA based E-UTRA downlink evaluation, in R1-050896, RAN WG1#42, London, UK, 2005.