DOI QR코드

DOI QR Code

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method

층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가

  • Lee, Il Wha (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Jung, Young Ho (Sigma STI Ltd. Co.) ;
  • Lee, Min Soo (Railway System Engineering, University of Science & Technology)
  • Received : 2015.08.13
  • Accepted : 2015.10.19
  • Published : 2015.12.31

Abstract

Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

급속경화궤도는 자갈궤도를 콘크리트궤도로 개량하는 공법으로서 야간 차단시간에 공사가 이루어지기 때문에 시공속도를 충분히 확보하는 것이 중요하다. 시공시간의 대부분은 자갈을 철거하고 재포설하는 과정에 소요되는데 도상자갈을 교체하지 않는 무교환방식이 적용 가능하다면, 시공시간 및 공사비를 대폭적으로 절감할 수 있다. 본 논문에서는 도상자갈 무교환방식의 급속경화궤도공법을 개발하기 위하여 침투성이 매우 높은 대체 충전재를 제시하고 재료의 공극조건을 고려하여 층별로 분리주입하는 시공방식을 도입하였다. 분리주입은 공극률이 높은 상부도상층과 공극률이 낮은 하부 혼입층에 최적화된 재료를 분리 주입하여 필요한 소요강도를 확보할 수 있다. 이를 달성하기 위하여 우선적으로 도상자갈의 크기, 분포도, 형상에 따른 공극률, 공극의 크기, 유효길이, 비틀림도, 침투성에 따른 충전재의 유동학적 해석을 통하여 최적의 충전재를 설계하고자 하였다. 하부 혼입층에 충전되는 1차 충전재료는 세립화 도상의 충전성과 부착력을 확보할 수 있는 폴리머계 재료를 도입하였으며, 상부 도상층에 충전되는 2차 충전재는 상온 반응성 마그네시아-포스페이트(MPC, Magnesium-Phosphate Ceramic)를 도입하였다. 선정재료 및 구조에 대한 역학시험 결과, 기존 급속경화궤도에 준하는 성능을 확인하였다.

Keywords

References

  1. I.W. Lee (2006) Optimal design of cement mortar pouring type paved track, Journal of the Korean Society for Railway, 9(3), pp. 305-312.
  2. M. Leva, M. weintraub, M. Grummer, M. Pollchik, and H. H. Storch (1951) Fluid Flow through Packed and Fluidized systems, Bulletin 504, Bureau of Mines.
  3. M.N. Abbas (2011) Modeling of porosity equation for water flow through packed bed Of monosize spherical packing, Journal of engineering and development, 15(4), pp. 205-226.
  4. P Clover (2008) Petrophysics MSc Course Note, Imperial College, London, pp.10-20.
  5. C.C. Furnas (1931) Mathematical relations for beds of broken solids of maximum density, Industrial and Engineering Chemistry Research, 23, pp. 1052-1058. https://doi.org/10.1021/ie50261a017
  6. E. Scheidegger (1974) The physics of flow through porous media (3rd ed.), University of Toronto Press, Canada, pp. 14-39.
  7. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), ASTM C293
  8. H.W. Cho, H.S. Shin, L.H. Lee (2013) Strength development of magnesia-phosphate cement considering borax ratio and curing temperature, Korea Concrete Institute proceedings of spring conference, Yeosu, 26(1), pp.333-335.