DOI QR코드

DOI QR Code

Vibration Isolation of Wave Barriers Constructed Near a Shallow Tunnel

저심도 터널과 인접한 방진벽의 지반진동 저감효과

  • Yang, Sin-Chu (High speed Railroad System Research Center, Korea Railroad Research Institute)
  • Received : 2015.07.27
  • Accepted : 2015.11.12
  • Published : 2015.12.31

Abstract

This paper presents an assessment method of the ground vibration level with a combination of measured data and an analytic method. The basic concept of the method is similar to that in FRA(Federal Railway Administration) manual for detailed vibration analyses. However, going into detail, the assessment method was modified for a feasible evaluation of the vibration reduction effects of diverse types of wave barriers. The force density was evaluated in a vehicle-track interaction analysis and the transfer mobility of vibration was analyzed through a 2-D ground vibration analysis. The calculated 2-D transfer mobility was corrected to incorporate transfer characteristics of actual ground vibration by comparing the previously measured data and analysis results. Nine types of vibration reduction effects of wave barriers were analyzed on a shallow tunnel section of an urban railway where numerous civil complaints had actually been filed.

본 논문에서는 계측자료와 해석방법의 조합에 의하여 지반진동을 평가하는 방법을 제시하였다. 평가방법의 기본개념은 FRA(Federal Railway Administration)에서 발간한 진동상세평가 매뉴얼에서 제시한 방법과 유사하나 구체적 평가방법은 다양한 유형의 방진벽의 진동저감 효과를 용이하게 평가할 수 있도록 수정되었다. 터널바닥에 작용하는 하중밀도(force density)는 해당선로의 차량 및 궤도조건을 잘 고려할 수 있는 차량-궤도 상호작용해석에 의하여 산정하였다. 지반진동의 전파유동성(transfer mobility) 2차원 지반진동해석을 통하여 평가하였다. 지반진동의 2차원 해석은 각 모델간의 상대비교에 있어서는 좋은 결과를 얻을 수 있으나 절대치 평가는 어렵다. 따라서 여기서는 사전에 계측된 자료와 해석결과의 비교를 통하여 실제 지반진동 전파특성을 반영할 수 있도록 계산된 전파유동성을 보완하였다. 정립된 진동평가방법을 적용하여 실제 진동민원문제가 크게 발생하였던 도시철도 저심도 터널구간을 대상으로 9가지 유형의 방진벽의 진동저감 효과를 분석하였다.

Keywords

References

  1. J.T. Nelson, H.J. Saurenman (1983) State-of-art review: Prediction and control of ground borne noise and vibration from rail transit trains, US Department of Transportation, Urban Mass Transportation.
  2. H.C. Shin, S.K. Cho, S.C. Yang (2009) Study on the improvement of empirical formula for prediction of ground vibration induced by urban rapid transit, Journal of the Korean Society for Railway, 12(3), pp. 357-363.
  3. H. Verbraken, G. Lombaert, G. Degrande (2011) Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations, Journal of Sound and Vibration, 330(8), pp. 1692-1703. https://doi.org/10.1016/j.jsv.2010.10.026
  4. L. Andersen, C.J.C. Jones (2006) Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two-and three-dimensional models, Journal of Sound and Vibration, 293(3-5), pp. 611-625. https://doi.org/10.1016/j.jsv.2005.08.044
  5. S. Gupta, M.F.M. Hussein, G. Degrande, H.E.M. Hunt, D. Clouteau (2007) A comparison of two numerical models for the prediction of vibrations from underground railway traffic, Soil Dynamics and Earthquake Engineering, 27(7), pp. 608-624. https://doi.org/10.1016/j.soildyn.2006.12.007
  6. C.E. Hanson, D.A. Towers, L.D. Meister (2006) Transit noise and vibration impact assessment, Office of planing and Environment Federal Transit Administration, FTA-VA-90-1003-06.
  7. J.U. Song, S.K. Kim, H. Park, W.K. Hong (2013) A study on the vibarion reduction by the position of borehole using experimental waveform and finite element analysis, Journal of Environmental Impact Assessment, 22(4), pp. 381-387. https://doi.org/10.14249/eia.2013.22.4.381
  8. D. Connolly, A. Giannopoulos, W. Fan, P.K. Woodward, et al. (2013) Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations, Construction and Building Materials, 44, pp. 557-564. https://doi.org/10.1016/j.conbuildmat.2013.03.034
  9. S. Ahmad, T. Al?Hussaini (1991) Simplified design for vibration screening by open and in-filled trenches, Journal of Geotechnical Engineering, 117(1), pp. 67-88. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(67)
  10. L. Andersen, S.R.K. Nielsen (2005) Reduction of ground vibration by means of barriers or soil improvement along a railway track, Soil Dynamics and Earthquake Engineering 25, pp. 701-716. https://doi.org/10.1016/j.soildyn.2005.04.007
  11. S.C. Yang, S.Y. Jang, E. Kim, S.H. Hwang et al. (2014) Establishment of reduction measures of noise and vibration between Yongsan station and Gajoa station in Kyeongui-line, Final report, Korea Railroad Research Institute.
  12. S.C. Yang (2009) Enhancement of the finite-element method for the analysis of vertical train-track interactions, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 223(6), pp. 609-620. https://doi.org/10.1243/09544097JRRT285
  13. S.C. Yang, E. Kim (2012) Effect on vehicle and track interaction of installation faults in the concrete bearing surface of a direct-fixation track, Journal of Sound and Vibration, 331(1), pp. 192-212. https://doi.org/10.1016/j.jsv.2011.08.023
  14. C. Onorii (2008) Mechanical behaviour of traditional and antivibration railway tracks with recycled rubber materials, Ph.D Thesis, Universitadegli Studi di Napoli Federico II.
  15. S.C. Yang, C.B. Yun (1992) Axisymmetric infinite elements for soil-structure interaction analysis, Engineering Structures, 14(6) pp. 361- 370. https://doi.org/10.1016/0141-0296(92)90019-M