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ABSTRACT : Nanotechnology, which has become an important area of science, has caused an enormous developmental
revolution in many fields. In the last two decades researchers have focused on overcoming the obstacles encountered during the
preparation of nanoparticles. This article highlights the nanotechnology, along with a brief description of the manufacturing,
concepts and activities of nanoparticles as alternative pesticides against plant pathogens, some methods for evaluation of
nanoparticles against phytopathogens in vitro and in vivo, and explains the importance of some common nanoparticle types used
in agricultural applications and plant pathology.
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Introduction

Nanotechnology has been defined as the manipulation
of matter with at least one diameter sized from 1 to 100
nanometers and manufacture of devices on the scale of
atoms or small groups of atoms. This definition resulted
from a particular technological aim to a broad category
of all research types and techniques that accord with the
special characteristics of matter that occur as a threshold
of given size. Nanotechnology clarifies the importance of
quantum mechanical effects at an atomic and molecular
scale [1, 2].

Manufactured nanostructures are the basis of modern
nanotechnology where research activities are growing ra-
pidly and attract essential funding either from public or
private sectors [3].

The source of nanoparticles can be both natural and

anthropogenic (manmade). Natural nanostructures have
existed in nature for millions of years and are generated
by natural processes due to weathering, volcanic eruption,
erosion, biological effects, and hydrolysis. Origins which
have resulted in an increase in formation of anthropoge-
nic nanomaterials [4] through the various actions that
participated in the increase of nanostructures in the en-
vironment include coal fired combustion, transportation,
welding operations followed by some recent processes
where engineered nanoparticles are prepared and produ-
ced slowly [5].

The nanomaterials are pysicochemically different and
superior to the atomic and bulk materials of the same
element [6]. For example, copper, which is impermeable
at macroscale becomes completely opaque and transpar-
ent to visional light at the nano level [7, 8]. Metal nano-
structures have also attracted interest due to their effec-
tive properties and applications in different fields such as
plant pathology [9].

Many efforts have been focused on the impact of using
nanoparticles in agriculture production, particularly in
control of plant pathogens.

The main objective of this review is to clearly, quanti-
tatively, and comprehensively describe the manufacturing,
concept, and activities of nanoparticles as alternative pes-
ticides against phytopathogens.

The concept of manufacturing and use of nanoparticles
Nanotechnology is dependent on the manipulation of
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functional systems at the molecular scale. This includes
the concepts of advanced works in the application of nano-
tech fields. In the natural environment, the particles con-
centration has increased gradually since tremendous
amounts of products are being marketed and commer-
cialized worldwide then released directly or indirectly
again into the environment [10, 11]. As basics, nanotech-
nology refers to the techniques and tools used in cons-
truction of items from the bottom up using high perfor-
mance products [12, 13].

Nanoparticles can be manufactured in two ways acting
as bottom-up and top-down techniques (Fig. 1). Top-
down technique involves breaking down the bulk mater-
ial into nano structures while the bottom-up refers to
creation of a material atom by atom and molecule by
molecule, so that the nanoparticles have been manufac-
tured using various chemical or physical methods dep-
ending on the size. Significant efforts have been focused
on accurate control of the particles’ size distribution;
chemical pathways carried out in solution have also been
very successful in obtaining nanoparticles with narrow
size distributions [14-16]. Metal nanoparticles could be
prepared by surfactant molecules in micro reactors formed
like micelles or in polymer solutions as well as other re-
agents for coordinating that effect on the surface of nano-
particles and preventing its growth [17]. There are two
main reasons for the qualitative differences in material
properties of nano structures. First, a defining advantage
at the nanoscale is the very great surface to volume rate
of these nanostructures. This indicates that no atom is
very far from a surface or interface and the action of
atoms at these higher energy sites has a significant influ-
ence on the properties of the material. Second, mechan-
ical and quantum active come into play at very small di-
mensions thus to new physics and chemistry. Therefore,
the size and size distribution as well as the number and
type of manufactured nanoparticles are most important
in the properties and effects of nanostructures. Surface

properties with very high area can enhance surface phe-
nomena to volume ratio, so that the atoms are on or near
the surface and more reactive, and the quantum effects
due the small dimensions of electrons leading to delocal-
ized on the surface of the nanoparticles (NPs) as discon-
tinuity behavior [18-22]. As a result of the tremendous
progress in nanotechnology and its techniques for prepa-
ration of nanostructures, nanotechnology has become
important in all areas of application, with promise to be-
nefit society and considerably improve technology in en-
vironmental and industrial sectors (Fig. 2).

Nanoparticle types and their classification
NPs can be classified into two main groups, on the

basis of their origins, natural and artificial. The artificial
group can be further subdivided into manu-  factured
and accidental. NPs can also be divided accord-  ing to
their chemical structures into organic and inorg-   anic
[23].

Natural NPs are distributed throughout the atmosphere
and found in many environments, and microorganisms
could be prepared the natural nanoparticle in two ways,
either directly to make the metabolic requirements avail-
able [24, 25] or indirectly from microbial activity results
[26, 27]. NPs have been released due to human activities
as a nano particulate matter for millennia as products of
activities including agriculture, construction, mineral pro-
cessing, and mining activities [28, 29]. The most import-
ant examples of natural and organic nanoparticles are
humic, fulvic acids, viruses, fullerenes, organic acids, and
nanoglobules, while examples of inorganic NPs include
magnetite, Ag, Au, Fe-Oxides, allophane, and sea salt.
Engineered NPs have been classified into C-containing
and inorganic groups based on their core materials. C-
containing NPs are classified as a combustion by-products
and an engineered soot form. The inorganic NPs can be
divided into by-products nanoparticles which composed
of polymeric NP and combustion by-products and engi-

Fig. 1. Illustration of bottom-up and top-down techniques of nanoparticle preparation.
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neered nanoparticles which composed of oxides, metals,
salts and aluminosilicates.

The most important examples of engineered and C-
containing NPs are nanoglobules, carbon black, and func-
tionalized carbon nanotubes, and examples of engineered
and inorganic NPs are polyethylenglycol (PEG) NPs, pla-
tinum group metals, TiO2, SiO2, Ag, Fe, and metal-phos-
phates [23].

Engineering and manufacturing of metal oxides NPs
Different types of nanomaterial have been produced

for different applications and commercial activities. Metal
oxides are important inorganic types due to their physical
and chemical properties and have demonstrated some size
dependent desired characteristics which makes the nano-
structures different from atomic scale and bulk materials
of the metal [30, 31]. Nano structures of metals have an
important role in many fields including catalysis, sensors,
biomedical diagnostics, environmental remediation, and
electronic materials [32-35]. Many metal nanoparticles
also have antifungal and antibacterial effects against some
plant pathogens [14, 36-38]. Nanoparticles have been fa-
bricated using chemical synthesis routes under specific
conditions. Therefore, some manufacturing methods for
metal nanoparticles will be discussed as follows:

Nanoparticles from many systems have been prepared;
important techniques for synthesis of nanoparticles include
pyrolysis, attrition, and hydrothermal methods. In pyro-
lysis, the resulting solid is air classified for recovery of
oxide particles from gases. Traditional pyrolysis results in

aggregates and agglomerates as single primary particles
while the ultrasonic spray pyrolysis helps in avoiding for-
mation of agglomeration [39]. In attrition, the nanostruc-
tures were grounded using a reducing mechanism like a
ball mill or a planetary ball mill, and the resulting parti-
cles were air classified for recovery of nanoparticles. All
thermal plasma temperatures were in the order of 10,000
K, so that the solid powder can be easily evaporated. Then
thermal plasma nanostructures were formed due to cool-
ing conditions while exiting the plasma region [31]. An
example of application of thermal plasma in nanoparticle
preparation is silica sand where it could be vaporized at
atmospheric pressure. The resulting mixture could be
rapidly cooled by quenching with oxygen thus ensuring
the quality of the silica produced [33, 40].

Condensation of inert-gas is also frequently used in
preparation of metal nanoparticles with low melting po-
ints by vaporizing the metal in a vacuum chamber under
supercoiling conditions and an inert gas stream. The
super cooled metal vapor will be condensed into nano-
meter size particles and could be entrained in the inert
gas stream then deposited and studied.

Nano structures could also be prepared by radiation
chemistry techniques where radiolysis from gamma rays
could create strongly active free radicals in solution. This
technique is simple and economical because it uses a mi-
nimum number of chemicals. In this process, a scavenger
chemical will preferentially interact with oxidizing radicals
to prevent the re-oxidation of the metal and reducing
radicals will drop metallic ions down to the zero-valence
state; metal atoms also begin to coalesce into particles in
zero-valence state, the particle surrounded by chemical
surfactant and regulates its growth during the formation
process; the interference with growing particle and nuc-
leating to prevent agglomeration and to control size is
important so that the surfactant molecules remain atta-
ched to the particle in plentiful concentrations therefore
preventing formation of clusters [41, 42].

Most common NPs types in agricultural applications
The followings highlight on some of the most common

types of NPs including iron oxide, titanium oxide, zinc
oxide, sulfur, chitosan, copper, magnesium oxide and sil-
ver oxides.

Iron oxide
Different chemical techniques and methods have been

used in manufacture of ultra-fine nanostructures of Fe2O3,

Fig. 2. Nanoparticle applications.
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such as hydrothermal reaction techniques and chemical
co-precipitation. The most common forms of iron oxide
NPs are maghemite, β-Fe2O3 and magnetite, Fe3O4 which
have a high potential for several applications. These types
of iron oxides could be prepared by all known chemical
techniques and methods and can be employed in many
fields [43-45].

Titanium oxide
These nano structures of Ti can be synthesized by dif-

ferent techniques, including co-precipitation, sol-gel syn-
thesis process, chemical vapor deposition, reverse micelle
synthesis, microemulsion synthesis process, and hydro-
thermal reaction method [46-50]. Four crystal forms of
Ti dioxide are natural structures called anatase brookite
and TiO2 [51], with desired properties including high re-
fractive indicator, light absorption/spread and its chemi-
cal stabilization, and relatively low cost preparation of
titanium dioxide.

Zinc oxide
Zinc oxides NPs have received the most attention in re-

cent years due to their properties which are applicable in
many fields including antibacterial agents and biomedical
labels [52, 53]. Several manufacturing techniques are used
in preparation of ZnO NPs, including thermal decompo-
sition, laser ablation, chemical vapour deposition, sol-gel
method, spray pyrolysis, molecular beam epitaxy, and
hydrothermal synthesis [54, 55]. ZnO nanostructures can
be synthesized on a large scale at low costs using simple
chemical components as solutions in simple techniques
such as chemical precipitation, sol-gel synthesis, and
solvo-hydrothermal reaction [53]. Sol-gel synthesis and
solvothermal/hydrothermal reaction have several influen-
ces over other processes, including use of basic equip-
ment, economical cost, friendly environment, and lower
risk. This technique has also been successfully employed
in preparation of luminescent materials and ZnO in nano-
scale, and the properties of particles produced from this
technique can be controlled via a hydrothermal process
by adjusting the temperature of reaction, concentration,
and time of precursors [53].

Many studies have reported on the effects of ZnO NPs
against plant pathogenic fungi e.g., Botrytes cinerea, Peni-
cillium expansum [56]; Alternaria alternata, Fusarium oxy-
sporum; Rhizopus stolonifer; Mucor plumbeus [57]; Fusa-
rium oxysporum; Penicilium expansum [58].

Also the scope of ZnO nanoparticles has been interest

for biologist due to their distinguished antimicrobial acti-
vity which has opened new trends to biological applica-
tions, particularly in its nanoscale form has a toxicity
against wide range of microorganisms such as bacteria,
fungi, algae and plants [59, 60]

Sulfur nanoparticles
Sulfur nanoparticles were prepared by different me-

thods, including chemical precipitation, electrochemical
method, composing of oil, micro emulsion technique,
surfactant, co-surfactant, aqueous phases with the speci-
fic compositions and ultrasonic treatment of sulfur-cystine
solution. This type of NPs has many practical applica-
tions in agriculture, particularly as antibacterial, fertilizers
where sulfur can be used as fungicide against many plant
diseases such as apple scab disease in cold conditions.
Sulfur nanoparticles are also used in grape, strawberry,
vegetables, and many other crops, and it is considered a
high efficiency pesticide used in agriculture where it has
a good effect against a wide range of plant diseases [61].

Chitosan nanoparticles
Chitin and chitosan are naturally occurring compounds

which can be obtained through alkaline deacetylation of
chitin, consisting of a β-(1,4)-linked-D-glucosamine resi-
due with the amine groups randomly acetylated [62].
Chitosan has many properties and applications in dif-
ferent areas. Chitosan is safe and has no toxicity and can
interact with poly anions to form complexes and gels
[63]. Chitin and chitosan are known to have eliciting acti-
vities leading to enhanced defense in host plants as a
response to microbial attack by the accumulation of
pathogen related (PR) proteins, proteinase inhibitors, and
phytoalexins, and thus have a distinguished role in con-
trol of fungal plant diseases.

Copper nanoparticles
Copper is one of the most widely used materials world-

wide. Copper nanoparticles have an important role in
control of several bacterial and fungal phytopathogens.
Different techniques have been used for preparation of
copper nanoparticles with controlled shape and size, inclu-
ding metal vapour deposition, radiolytic reduction, elec-
trochemical reduction, mechanical attrition, thermal de-
composition, and chemical reduction. Among these me-
thods the solution method is the simplest and most ver-
satile for nanoparticle preparation [64, 65], therefore cop-
per nanoparticles were synthesized by chemical reduction
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of Cu2+ in the presence of cetyl trimethyl ammonium
bromide and isopropyl alcohol. Many publications have
reported on the antifungal effect of copper nanoparticles
against plant pathogenic fungi like Alternaria alternata;
Phoma destructiva, Fusarium oxysporum, Curvularia lun-
ata [66].

Magnesium oxide nanoparticles
Magnesium plays a crucial role in employment of im-

portant biological polyphosphates such as ATP, RNA, and
DNA [67]. It is an alkaline earth metal with its ionic form
Mg2+ important to all living organism. Magnesium oxide
is an important type of nanoparticles and has many appli-
cations. Nanoparticles of MgO have unique properties,
and are used extensively in catalysis, toxic waste remedi-
ation, and refractory materials industries [68-70]. These
are also used as agents to induce systemic resistance
against various plant pathogens [71]. Wani and Shah [57]
mentioned the antifungal effect of magnesium oxide nano-
particles on some pathogens like Alternaria alternate, Fus-
arium oxysporum, Rhizopus stolonifer, and Mucor plum-
beus, and reported the highest effect using the 30 and 50
nm nanoparticle size.

Silver nanoparticles
Among the different types of metal, silver nanoparticles

have been reported most in the literature due to their
effects and rapidly growing applications in different pro-
duction and environmental areas [72]. Various shapes
and sizes can be designed through a variety of different
synthesis approaches using various capping agents depen-
ding on aims and applications. In addition, Ag NPs are
safe type of nanoparticle due to its residue could be chan-
ged to natural status in low pH or acidic environmental
conditions [73]. Also Ag NPs are safe because there is no
interaction between silver and living organisms during
the preparation of nanoparticles [74].

Silver NPs have been used against different fungal plant
pathogens and their suppressive effects on growth and
structures of fungi have been reported in Alternaria alter-
nata, Rhizoctonia solani, Botrytis cinerea, Curvularia lun-
ata, Sclerotinia sclerotiorum, Macrophomina phaseolina [35],
Cladosporium cladosporoides [75]; Alternaria alternate;
Alternaria brassicicola; Alternaria solani; Botrytis cinerea;
Cladosporium cucumerinum; Corynespora cassiicola; Cylin-
drocarpon destructans; Didymella bryoniae; Fusarium oxy-
sporum f. sp cucumerinum.; F. oxysporum f. sp. lycopersici;
F. oxysporum; Fusarium solani; Fusarium sp; Glomerella
cingulate; Monosporascus cannonballus; Pythium aphani-
dermatum; Pythium spinosum; Stemphylium lycopersici
[37]. Golovinomyces cichoracearum, Sphaerotheca fusca
[38]; Colletotrichum spp. also; Sclerotium cepivorum [76];

Fig. 3. Illustration of some fungal pathogens that are suppressed by silver, with influential sizes of nanoparticles (NPs).
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Sclerotinia sclerotiorum; Rhizoctonia solani, Sclerotinia
minor [38, 77]. Pythium altimum, Mangnoprthe grise, Col-
letotricum gloeosporiodes, Botrytis cinerea; Fusarium cul-
morum [78]; Fusarium culmorum [79]; and Colletotrichum
gloesporioides [80] (Fig. 3).

Kim et al. [81] studied the antimicrobial activity of
silver nanoparticles against Acidovorax citrulli and they
found that the growth of five strains of A. citrulli was
checked by 99% with the combination of Ag/Glucose
1,000 ppm. Also, Paulkumar et al. [82] confirmed that
the silver in nano scale has shown excellent antimicrobial
activity against plant pathogens Citrobacter freundii and
Erwinia cacticida, therefore, they concluded that the silver
nanoparticles will have a beneficial application in crop
improvement and protection in agricultural nanoscience.

Some methods for evaluation of nanoparticles against
fungal phytopathogens

Basic steps for examination of nanoparticles as control
agents against fungal plant pathogens [37]:

1) Prepare spore suspension in different concentrations
of nanoparticles to evaluate their effect on the spore ger-
mination of fungi:

2) Prepare the fungal inoculates on potato dextrose agar
(PDA) media (a common microbial media for culturing
fungus) at 28oC in petri plates.

3) Prepare spore suspension of each isolate of fungi
containing at least 20~30 spores per microscopic field
from 10 day old fungal culture.

4) Place one drop, approximately 0.1 mL of spore sus-
pension in a cavity glass slide containing a drop (approxi-
mately 0.1 mL) of different concentrations of nanoparti-
cles.

5) Keep these slides in a moist chamber by placing two
folds of filter paper on both sides of petri-plates.

6) Incubate these petri plates at 24 ± 2°C for 24 hr. Re-
plicate each treatment four or five times to confirm the
obtained results. Record the percent spore germination
using the following formula:

Assay for sclerotium forming phytopathogenic fungi
1) Refresh the sclerotia by incubating the fungal plates

at room temperature without treatment.
2) Wash the sclerotia (2~4 weeks old) with sterilized

distilled water and rinse with 70% alcohol. The sclerotia
must be 2~4 weeks old.

3) For testing the sclerotial germination growth, one
sclerotium is placed in the center of petri plates contain-
ing malt extract agar (MEA) medium supplemented with
either concentrations of the nanoparticles or an equal
volume of water.

4) Incubate the plates at 24oC, and use for measure-
ment of sclerotial germination growth.

5) Determine the sclerotial germination rate by meas-
uring the diameter of mycelial colonies.

Bio-assay method for evaluation of nanoparticle effects
on foliar diseases in greenhouse:

1) Artificial infection of host plant with pathogen.
2) Use nanoparticle at different concentrations.
3) Use the aerial spray method for application of nano-

particles around the shoot portion of the whole plants
3~4 weeks before the outbreak of the disease and after
disease occurrence.

4) Distilled water was used as a control.
5) Calculate the disease index by counting the number

of infected leaves out of 100~150 leaves among the treated
plants.
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