DOI QR코드

DOI QR Code

Numerical Investigation of Deformation of Thin-walled Tube Under Detonation of Combustible Gas Mixture

가연성 연소 가스의 데토네이션에 의한 얇은 관 변형 모델링

  • Gwak, Mincheol (Department of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Lee, Younghun (Department of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 곽민철 (서울대학교 기계항공공학부) ;
  • 이영헌 (서울대학교 기계항공공학부) ;
  • 여재익 (서울대학교 기계항공공학부)
  • Received : 2014.04.15
  • Accepted : 2014.09.17
  • Published : 2015.01.01

Abstract

We present the results of a multi-material numerical investigation of the propagation of a combustible gas mixture detonation in narrow metal tubes. We use an experimentally tuned one step Arrhenius chemical reaction and ideal gas equation of state (EOS) to describe stoichiometric $H_2-O_2$ and $C_2H_4-O_2$ detonations. The purely plastic deformations of copper and steel tubes are modeled using the Mie-Gruneisen EOS and Johnson-Cook strength model. To precisely track the interface motion between the detonating gas and the deforming wall, we use the hybrid particle level-sets within the ghost fluid framework. The calculated results are validated against the experimental data because the results explain the process of the generation and subsequent interaction of the expansion wave with the high-strain-rate deformation of the walls.

본 논문에서는 다물질(가연성 기체 혼합물과 금속관) 수치 해석 기법을 활용하여 밀리미터 크기의 얇은 두께의 금속관 내에서의 데토네이션을 모델링하였다. 데토네이션의 해석을 위하여 수소와 에틸렌 혼합물의 실험과 이론적 값을 기반으로 최적화된 1단계 아레니우스 형태의 화학 반응식, 이상기체 상태 방정식을 활용하여 모델링하였다. 또한 금속관의 재료인 구리와 철은 Mie-Gruneisen 상태 방정식과 Johnson-Cook 강성 모델을 활용하여 큰 압력에 의한 관의 소성 변형을 모델링하였다. 다물질 수치 해석을 위한 경계면의 추적 및 경계면 값의 결정은 각각 hybrid particle level-set 기법과 ghost fluid method(GFM)을 통하여 획득하였다. 수치적 해석 결과는 실험값과의 비교를 통하여 검증 하였으며, 관두께(두꺼운 관과 얇은 관)에 따른 내부 유동장의 변화를 확인하였다. 얇은 관의 경우, 데토네이션에 의해 발생하는 높은 내부 압력에 의하여 관의 소성 변형이 일어나고, 이에 따라 발생하는 팽창파에 의해 내부 기체 혼합물의 압력 및 밀도의 감소현상을 확인하였다.

Keywords

References

  1. Naitoh, M., Kasahara, F., Mitsuhashi, I. and Ohshima, I., 2003, "Analysis on Pipe Rupture of Steam Condensation Line at Hamaoka-1," J. Nucl. Sci., Vol. 40, pp. 1032-1040. https://doi.org/10.3327/jnst.40.1032
  2. Vaidogas, E. R. and Jucevicius, V., 2008, "Sustainable Development and Major Industrial Accidents," Tech. Economic Devel. Economy. Vol. 14, pp. 612-627. https://doi.org/10.3846/1392-8619.2008.14.612-627
  3. Roy, G. D., Frolov, S. M. and Netzer, D. W., 2004, "Pulse Detonation Propulsion: Chanllenges, Current Status, and Future Perspective," Prog. Energy Combust., Vol. 30, pp. 545-672 https://doi.org/10.1016/j.pecs.2004.05.001
  4. Uruno, T., Maeda, S. and Kasahara, 2013, "Study on Detonation Wave Attenuation Through Narrow Tube for Application to Explosion Safety and Detonation Engines," 51th AIAA Aerospace Sciences Meeting, 7-10 January, Texas.
  5. Beltman, W. M. and Shepherd, J. E., 2002, "Linear Elastic Reponse of Tubes to Internal Detonation Loading," J. Sound Vib., Vol. 252, pp. 617-655. https://doi.org/10.1006/jsvi.2001.4039
  6. Karnesky, J. A., 2010, "Detonation Induced Strain in Tubes," PhD thesis, California Institute of Technology, Pasadena, California.
  7. Karnesky, J. A., Damazo, J. S., Chow-Yew, K., Rusinek, A. and Shepherd, J. E., "Plastic Deformation Due to Reflected Detonation," 2013, Int. J. Solids Struct, Vol. 50, pp. 97-110. https://doi.org/10.1016/j.ijsolstr.2012.09.003
  8. Damazo, J. S., 2013, "Planar Relfection of Gaseous Detonation," PhD thesis, California Institute of Technology, Pasadena, California.
  9. Nebu, A., Inagaki, T., Kawaeda, H., Inhida, T. and Kuznetsov, M. "Structural Response of Steel Pipes induced by Hydrogen-oxygen Detonation," SMiRT 19, Toronto, August 2007, Paper#J04/3.
  10. Shepherd, J. E., 2009, "Structural Response of Piping to Interal Detonation," J. Pres. Ves. Tech., Vol. 131.
  11. Gamezo, V. N., Desbordes, D. and Oran, E. S., 1999, "Two-dimensional Reactive Flow Dynamics in Cellular Detonation Waves," Shock Waves, Vol. 9, pp. 11-17. https://doi.org/10.1007/s001930050134
  12. Kim, K. and Yoh, J. J., 2013, "A Particle Level-set Based Eulerian Method for Multi-material Detonatio Simulation of High Explosive and Metal Confinements," Proc. Combust. Inst., Vol. 34, pp. 2025-2033. https://doi.org/10.1016/j.proci.2012.07.010
  13. Yoo, S. and Stewart, D. S., 2005, "A Hybrid Level Set Method for Modelling Detonation and Combustion Problems in Complex Geometries," Combust. Theory Modelling, Vol. 9, pp. 219-254. https://doi.org/10.1080/13647830500098373
  14. Lee, S., Barthelat, F., Hutchinson, J. W. and Espinosa, H. D., 2006, "Dynamic Failure fo Metallic Pyromidal Truss Core Materials-Experiments and Modelling," Int. J. Plasticity, Vol. 22, pp. 2118-2145. https://doi.org/10.1016/j.ijplas.2006.02.006
  15. Vitall, E. and Benson, D. J., 2012, "Modelling Localized Failure with Arbitrary Largrangian Eulerian Methods," Comput. Mech. Vol. 49, pp. 197-212. https://doi.org/10.1007/s00466-011-0632-3