DOI QR코드

DOI QR Code

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Received : 2014.04.14
  • Accepted : 2014.06.12
  • Published : 2015.01.15

Abstract

Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.

Keywords

Acknowledgement

Supported by : Korean Society of Ginseng, Korea Ginseng Cooperation

References

  1. Handa RJ, Ogawa S, Wang JM, Herbison AE. Roles for oestrogen receptor ${\beta}$ in adult brain function. J Neuroendocrinol 2012;24:160-73. https://doi.org/10.1111/j.1365-2826.2011.02206.x
  2. Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta in the brain: from form to function. Brain Res Rev 2008;57:309-20. https://doi.org/10.1016/j.brainresrev.2007.05.013
  3. Pettersson K, Gustafsson JA. Role of estrogen receptor beta in estrogen action. Annu Rev Physiol 2001;63:165-92. https://doi.org/10.1146/annurev.physiol.63.1.165
  4. Chaudhary SC, Singh T, Talwelkar SS, Srivastava RK, Arumugam A, Weng Z, Elmets CA, Afaq F, Kopelvich L, Athar M. Erb-041, an estrogen receptor beta agonist inhibits skin photocarcinogenesis in SKH-1 hairless mice by downregulating WNT signaling pathway. Cancer Prev Res (Phila) 2013;7:186-98.
  5. Zhao C, Dahlman-Wright K, Gustafsson JA. Estrogen signaling via estrogen receptor ${\beta}$. J Biol Chem 2010;285:39575-9. https://doi.org/10.1074/jbc.R110.180109
  6. Islander U, Erlandsson MC, Hasseus B, Jonsson CA, Ohlsson C, Gustafsson JA, Dahlgren U, Carlsten H. Influence of oestrogen receptor ${\alpha}$ and ${\beta}$ on the immune system in aged female mice. Immunology 2003;110:149-57. https://doi.org/10.1046/j.1365-2567.2003.01704.x
  7. Mannella P, Brinton R. Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action. J Neurosci 2006;26: 9439-47. https://doi.org/10.1523/JNEUROSCI.1443-06.2006
  8. Lee YR, Park J, Yu HN, Kim JS, Youn HJ, Jung SH. Up-regulation of PI3K/Akt signaling by 17${\beta}$-estradiol through activation of estrogen receptor-${\alpha}$ , but not estrogen receptor-${\beta}$, and stimulates cell growth in breast cancer cells. Biochem Biophys Res Commun 2005;336:1221-6. https://doi.org/10.1016/j.bbrc.2005.08.256
  9. Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR. Estrogen receptor ${\beta}$ mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 2009;296:R972-8. https://doi.org/10.1152/ajpregu.00045.2009
  10. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez- Baron M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004;30: 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
  11. Lee SH, Jung BH, Kim SY, Lee EH, Chung BC. The antistress effect of ginseng total saponin and ginsenoside Rg3 and Rb1 evaluated by brain polyamine level under immobilization stress. Pharmacol Res 2006;54:46-9. https://doi.org/10.1016/j.phrs.2006.02.001
  12. Cho SO, Lim JW, Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori-infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3. J Ethnopharmacol 2013;150: 761-4. https://doi.org/10.1016/j.jep.2013.09.013
  13. Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND. Korean Red Ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol 2009;121:304-12. https://doi.org/10.1016/j.jep.2008.10.038
  14. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  15. Li QY, Chen L, Fu WH, Li ZD, Wang B, Shi XJ, Zhong MK. Ginsenoside Rb1 inhibits proliferation and inflammatory responses in rat aortic smooth muscle cells. J Agric Food Chem 2011;59:6312-8. https://doi.org/10.1021/jf200424k
  16. Cheng W, Wu D, Zuo Q, Wang Z, Fan W. Ginsenoside Rb1 prevents interleukin- 1 beta induced inflammation and apoptosis in human articular chondrocytes. Int Orthop 2013;37:2065-70. https://doi.org/10.1007/s00264-013-1990-6
  17. Kim EH, Kim IH, Lee MJ, Thach Nguyen C, Ha JA, Lee SC, Choi S, Choi KT, Pyo S, Rhee DK. Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) ${\beta}$ up-regulation. J Ethnopharmacol 2013;148:474-85. https://doi.org/10.1016/j.jep.2013.04.041
  18. Shin YM, Jung HJ, Choi WY, Lim CJ. Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 2013;40:269-79. https://doi.org/10.1007/s11033-012-2058-1
  19. Shim MK, Lee YJ. Estrogen receptor is activated by Korean red ginseng in vitro but not in vivo. J Ginseng Res 2012;36:169-75. https://doi.org/10.5142/jgr.2012.36.2.169
  20. Li QY, Chen L, Zhu YH, Zhang M, Wang YP, Wang MW. Involvement of estrogen receptor-${\beta}$ in farrerol inhibition of rat thoracic aorta vascular smooth muscle cell proliferation. Acta Pharmacol Sin 2011;32:433-40. https://doi.org/10.1038/aps.2011.1
  21. Kang J, Rychahou PG, Ishola TA, Mourot JM, Evers BM, Chung DH. N-myc is a novel regulator of PI3K-mediated VEGF expression in neuroblastoma. Oncogene 2008;27:3999-4007. https://doi.org/10.1038/onc.2008.15
  22. Musser DA, Oseroff AR. The use of tetrazolium salts to determine sites of damage to the mitochondrial electron transport chain in intact cells following in vitro photodynamic therapy with Photofrin II. Photochem Photobiol 1994;59:621-6.
  23. Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA. Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 2005;24: 6605-16. https://doi.org/10.1038/sj.onc.1208807
  24. Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H. Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells. Mol Endocrinol 2010;24:1737-47. https://doi.org/10.1210/me.2010-0125
  25. Kim AH, Khursigara G, Sun X, Franke TF, Chao MV. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 2001;21:893-901. https://doi.org/10.1128/MCB.21.3.893-901.2001
  26. Zhang HM, Rao JN, Guo X, Liu L, Zou T, Turner DJ, Wang JY. Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion. J Biol Chem 2004;279:22539-47. https://doi.org/10.1074/jbc.M314337200
  27. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE-B. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275:10761-6. https://doi.org/10.1074/jbc.275.15.10761
  28. Choi BH. Oxygen, antioxidants and brain dysfunction. Yonsei Med J 1993;34: 1-10. https://doi.org/10.3349/ymj.1993.34.1.1
  29. Floyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999;222:236-45. https://doi.org/10.1046/j.1525-1373.1999.d01-140.x
  30. Herbert V, Shaw S, Jayatilleke E, Stopler-Kasdan T. Most free-radical injury is iron-related: it is promoted by iron, hemin, holoferritin and vitamin C, and inhibited by desferoxamine and apoferritin. Stem Cells 1994;12:289-303. https://doi.org/10.1002/stem.5530120305
  31. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 2004;4: 3943-52. https://doi.org/10.1002/pmic.200400848
  32. McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP. Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. Q J Med 2001;94:485-90. https://doi.org/10.1093/qjmed/94.9.485
  33. Madrigal J, Garcia-Bueno B, Caso J, Perez-Nievas B, Leza J. Stress-induced oxidative changes in brain. CNS Neurol Disord Drug Targets 2006;5:561-8. https://doi.org/10.2174/187152706778559327
  34. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME. Regulation of neuronal survival by the serinethreonine protein kinase Akt. Science 1997;275:661-5. https://doi.org/10.1126/science.275.5300.661
  35. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231-41. https://doi.org/10.1016/S0092-8674(00)80405-5
  36. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene 2003;22:8983-98. https://doi.org/10.1038/sj.onc.1207115
  37. Gottlieb T, Leal J, Seger R, Taya Y, Oren M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 2002;21:1299-303. https://doi.org/10.1038/sj.onc.1205181
  38. KimY,KimJ,KwonH, Lee D,WonM,KwonY,KimY. KoreanRed Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. J Ginseng Res 2013;37:413-24. https://doi.org/10.5142/jgr.2013.37.413
  39. Chen S, Liu J, Liu X, Fu Y, Zhang M, Lin Q, Zhu J, Mai L, Shan Z, Yu X, et al. Panax notoginseng saponins inhibit ischemia-induced apoptosis by activating PI3K/ Akt pathway in cardiomyocytes. J Ethnopharmacol 2011;137:263-70. https://doi.org/10.1016/j.jep.2011.05.011
  40. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica 2009;30:379-87. https://doi.org/10.1038/aps.2009.24
  41. Gamerdinger M, Manthey D, Behl C. Oestrogen receptor subtype-specific repression of calpain expression and calpain enzymatic activity in neuronal cells - implications for neuroprotection against Ca-mediated excitotoxicity. J Neurochem 2006;97:57-68. https://doi.org/10.1111/j.1471-4159.2006.03675.x
  42. Aguirre C, Jayaraman A, Pike C, Baudry M. Progesterone inhibits estrogenmediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-${\beta}$. J Neurochem 2010;115:1277-87. https://doi.org/10.1111/j.1471-4159.2010.07038.x
  43. Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al. Neuroprotective effects of ginsenoside Rg3 against homocysteine- induced excitotoxicity in rat hippocampus. Brain Res 2007;1136: 190-9. https://doi.org/10.1016/j.brainres.2006.12.047
  44. Cho J, Park W, Lee S, Ahn W, Lee Y. Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and -beta, independent of ligand binding. J Clin Endocrinol Metab 2004;89:3510-5. https://doi.org/10.1210/jc.2003-031823

Cited by

  1. Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats vol.20, pp.11, 2015, https://doi.org/10.3390/molecules201119692
  2. Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences vol.123, pp.12, 2015, https://doi.org/10.1007/s00702-016-1620-8
  3. Inhibition of VCAM-1 expression on mouse vascular smooth muscle cells by lobastin via downregulation of p38, ERK 1/2 and NF-κB signaling pathways vol.39, pp.1, 2016, https://doi.org/10.1007/s12272-015-0687-3
  4. Inhibition of LPS-induced inflammatory mediators by 3-hydroxyanthranilic acid in macrophages through suppression of PI3K/NF-κB signaling pathways vol.7, pp.7, 2015, https://doi.org/10.1039/c6fo00187d
  5. Ramalin‐Mediated Apoptosis Is Enhanced by Autophagy Inhibition in Human Breast Cancer Cells vol.30, pp.3, 2015, https://doi.org/10.1002/ptr.5544
  6. Neuroprotective effect of Korea Red Ginseng extract on 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 Cells vol.20, pp.6, 2015, https://doi.org/10.1080/19768354.2016.1257510
  7. Inhibitory Effect of Methyl 2-(4′-Methoxy-4′-oxobutanamide) Benzoate from Jerusalem Artichoke (Helianthus tuberosus) on the Inflammatory Paracrine Loop between Macrophages and Adipocytes vol.64, pp.49, 2015, https://doi.org/10.1021/acs.jafc.6b03407
  8. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products vol.26, pp.5, 2015, https://doi.org/10.1007/s10068-017-0159-2
  9. Pneumolysin induces cellular senescence by increasing ROS production and activation of MAPK/NF-κB signal pathway in glial cells vol.129, pp.None, 2015, https://doi.org/10.1016/j.toxicon.2017.02.017
  10. Korean Red Ginseng Extract Enhances the Anticancer Effects of Sorafenib through Abrogation of CREB and c‐Jun Activation in Renal Cell Carcinoma vol.31, pp.7, 2015, https://doi.org/10.1002/ptr.5829
  11. Cirsimaritin Contributes to the Estrogenic Activity ofCirsium japonicumvar.maackiithrough the Activation of Estrogen Receptor α : Estrogenic Compounds ofCirsium japonicumvar.maackii vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11342
  12. Transcriptomic effects of Aspergillus alliaceus on Orobanche during its pathogenesis vol.125, pp.1, 2018, https://doi.org/10.1007/s41348-017-0122-8
  13. Anti-aging Effects of Ginseng and Ginsenosides on the Nervous System vol.14, pp.8, 2015, https://doi.org/10.3923/ijp.2018.1188.1197
  14. Shenmai injection improves the postoperative immune function of papillary thyroid carcinoma patients by inhibiting differentiation into Treg cells via miR‐103/GPER1 axis vol.79, pp.7, 2018, https://doi.org/10.1002/ddr.21459
  15. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH‐SY5Y cells vol.32, pp.12, 2015, https://doi.org/10.1096/fj.201701386
  16. Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling vol.11, pp.21, 2015, https://doi.org/10.18632/aging.102387
  17. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study vol.12, pp.6, 2015, https://doi.org/10.3390/nu12061582
  18. Histological, ultrastructural, and biochemical study on the possible role of Panax ginseng in ameliorating liver injury induced by Lambda cyhalotherin vol.9, pp.1, 2015, https://doi.org/10.1186/s43088-020-00076-6
  19. Pharmacological properties of ginsenosides in inflammation-derived cancers vol.476, pp.9, 2021, https://doi.org/10.1007/s11010-021-04162-w