DOI QR코드

DOI QR Code

Flow Estimation Using Rainfalls Derived from Multiple Satellite Images in North Korea

위성 강우자료를 이용한 북한지역 홍수량 추정

  • KIM, Joo-Hun (Dept. of Hydro Science and Engineering Research, KICT) ;
  • CHOI, Yun-Seok (Dept. of Hydro Science and Engineering Research, KICT) ;
  • KIM, Kyung-Tak (Dept. of Hydro Science and Engineering Research, KICT)
  • 김주훈 (한국건설기술연구원 수자원.하천연구소) ;
  • 최윤석 (한국건설기술연구원 수자원.하천연구소) ;
  • 김경탁 (한국건설기술연구원 수자원.하천연구소)
  • Received : 2015.09.19
  • Accepted : 2015.12.02
  • Published : 2015.12.31

Abstract

The objective of this study is to estimate the flood flow of inaccessible regions using satellite-derived rainfall and global geographic data. This study focuses on Dongsingun, an area located upstream of the Cheongcheon River in North Korea. The IFAS model was used to estimate flood flow. The model was calibrated in the Gap Stream watershed in South Korea and verified for the Byeongsung Stream watershed in the Nakdong River basin. Satellite-derived rainfalls for North Korea was revised using ground gauge data. Analysis results using CMORPH and GSMaP_NRT showed $4,886m^3/s$ and $5,718m^3/s$ respectively. In future studies, hydrological analysis in unmeasured and inaccessible regions will be carried out by applying more rainfall events.

본 연구는 위성으로부터 유도된 위성강우자료와 글로벌 지형자료를 활용하여 대표적인 비접근 지역인 북한지역의 청천강 상류에 위치한 동신군 지역을 대상으로 홍수량을 추정하는 것을 목적으로 하였다. 북한지역 홍수량 추정을 위한 모형은 IFAS를 이용하였고, 검증이 가능한 국내의 갑천 유역에 대하여 모형에 대한 매개변수를 보정하였다. 모형의 검증을 위하여 낙동강의 병성천 유역을 대상으로 수행하였다. 북한지역에 대한 위성강우를 이용한 분석에서 지상계측 자료를 이용하여 위성강우자료를 수정하였다. 수정된 위성강우를 이용한 유출분석에서는 첨두유출량이 CMORPH가 $4,885.8m^3/s$, GSMaP_NRT가 $5,717.5m^3/s$의 유출이 발생하는 것으로 분석되었다. 향후 더 많은 강우사상을 적용 및 검증을 통해 미계측/비접근 지역에 대한 수문분석에 활용할 계획이다.

Keywords

References

  1. Ahn, J.H. and Y.N. Yoon. 2010. Water resources situation and water supply outlook in North Korea(1). Water for Future 43(4):17-26 (안재현, 윤용남. 2010. 북한 수자원 현황과 용수수급 전망(1). 물과 미래 43(4):17-26).
  2. Alemseged, T.H., E. Habib and T. Rientjes. 2013. Evaluation of the Climate Prediction Center(CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River. Hydrological Process 27(2):1829-1839. [DOI]: 10.1002/hyp.9330.
  3. Apip, K.T., Y. Yamashiki, K. Sassa, A.B. Ibrahim and H. Fukuoka. 2010. A distributed hydrological-geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides 7:237-258. [DO]I: 10.1007/s10346-010-0214-z.
  4. Harmeling, S. and D. Eckstein. 2012. Global Climate Risk Index 2013. Germanwatch.
  5. Kim, J.H., K.T. Kim and Y.S. Choi. 2013b. Fitness evaluation of CMORPH satellite-derived precipitation data in Korea. Journal of Wetlands Research 15(3):339-346 (김주훈, 김경탁, 최윤석. 2013b. 한반도의 CMORPH 위성강수자료 정확도 평가. 한국습지학회논문집 15(3):339-346). https://doi.org/10.17663/JWR.2013.15.3.339
  6. Kim, J.H., K.T. Kim and Y.S. Choi. 2014. Runoff estimation using rainfalls derived from multi-satellite images. Journal of the Korean Association of Geographic Information Studies 17(1):107-118 (김주훈, 김경탁, 최윤석. 2014. 다중 위성 강우자료를 이용한 유출 평가. 한국지리정보학회지 17(1):107-118). https://doi.org/10.11108/kagis.2014.17.1.107
  7. Kim, J.P., K.W. Park, L.W. Joung and G.S. Kim. 2013a. Application of high resolution multi-satellite precipitation products and a distributed hydrological modeling for daily runoff simulation. Korea Journal of Remote Sensing 29(2):263-274 (김종필, 박경원, 정일원, 한경수, 김광섭. 2013a. 고해상도 다중위성강수자료와 분포형 수문모형의 유출모의 적용. 대한원격탐사학회논문집 29:(2):263-274). https://doi.org/10.7780/kjrs.2013.29.2.10
  8. Kim, K.T. and J.H. Kim. 2013. Introduction for case study of rainfall observations and application using satellite. Water for Future 46(4):66-75 (김경탁, 김주훈. 2013. 인공위성을 이용한 강우관측자료 및 활용 사례 소개. 물과미래 46(4):66-75).
  9. Lee, S. 1999. Imjin river basin flood and permanent measures. Journal of Korea Water Resources Association 32(6):8-15 (이상태. 1999. 임진강 유역의 수해와 항구 대책. 한국수자원학회논문집 32(6):8-15).
  10. Pereira, A.J., R.E. Carbone, J.E. Janowiak, P. Arkin, R. Joyce, R. Hallak, and C.G.M. Ramos 2010. Satellite rainfall estimates over South America - possible applicability to the water management of large watersheds. Journal of the American Water Resources Association 46(2):344-360. [DOI]: 10.1111/j.1752-1688.2009.00406.x.
  11. Rea, L.M. and R.A. Parker. 2005. Designing and conducting survey research: a comprehensive guide, 3rd Ed., San Francisco, CA: Jossey-Bass.
  12. Sohn, B.J., H.J. Han and E.K. Seo. 2010. Validation of satellite-based highresolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. Journal of Applied Meteorology and Climatology 49(4):701–714. https://doi.org/10.1175/2009JAMC2266.1
  13. Sonu, J.H. 1986. Technical review of the impact Geumgangsan dam construction. Land and Construction 29:40-44 (선우중호. 1986. 금강산댐 건설 영향에 대한 기술적 검토. 국토와 건설 29:40-44).
  14. Ushio, T and M. Kachi. 2010. Kalman filtering applications for global satellite mapping of precipitation (GSMaP). In: Gebremichael, M. and Hossain, F.(Eds.), Satellite Rainfall Applications for Surface Hydrology, Springer Dordrecht Heidelberg London New York, pp. 105-123. [DOI]: 10.1007/978-90-481-2915-7_7.
  15. Woo, H.S. 1996. July 1996 Imjin great flood. Korean Society of Civil Engineering 44(8):78-84 (우효섭. 1996. 1996년 7월 임진강 대홍수. 대한토목학회지 44(8):78-84).
  16. Xie, P, S.H. Yoo, R. Joyce and Y. Yarosh. 2011. Bias-corrected CMORPH: a 13-year analysis of high-resolution global precipitation. NOAA's cimate prediction center(presentation) (http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/REF/EGU_1104_Xie_bias-CMORPH.pdf).

Cited by

  1. 한반도 수재해 관측을 위한 수자원 위성의 적용성 vol.20, pp.1, 2015, https://doi.org/10.11108/kagis.2017.20.1.085
  2. 위성 강우자료를 이용한 해외 유역 홍수량 추정 - 모로코 세부강 유역을 대상으로 - vol.20, pp.3, 2017, https://doi.org/10.11108/kagis.2017.20.3.141
  3. 원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(I) - 홍수량 산정을 중심으로 - vol.35, pp.5, 2019, https://doi.org/10.7780/kjrs.2019.35.5.2.3
  4. 위성강수 GPM IMERG, GSMaP, CMORPH 정확도 비교 vol.23, pp.3, 2015, https://doi.org/10.11108/kagis.2020.23.3.208
  5. 위성자료를 활용한 미계측유역의 홍수피해액 추산기법 개발 및 적용 vol.53, pp.12, 2015, https://doi.org/10.3741/jkwra.2020.53.12.1183