DOI QR코드

DOI QR Code

Relative Sensitivity Analysis of the Soil Water Characteristics Curve

  • Received : 2015.09.02
  • Accepted : 2015.12.20
  • Published : 2015.12.31

Abstract

This study was conducted to develop the SWCC estimation equation using scaling technique, and to investigate relative sensitivity of the SWCC according to the soil water tension, for the four kinds of soil texture such as Sand [S], Sandy Loam [SL], Loam [L] and Clay Loam [CL]. The SWCC estimation equation of scale factor [${\Theta}sc$] (Eq. 1) was developed based on the log function (Eq. 2) and exponential function (Eq. 3). ${\Theta}sc=[({\Theta}-{\Theta}r)/({\Theta}s-{\Theta}r)]$ (Eq. 1) ${\Theta}sc=-0.196ln(H)+0.4888$ (Eq. 2) ${\Theta}sc=0.3804(H)^{(-0.448)}$ (Eq. 3) where, ${\Theta}$: water content (g/g %), ${\Theta}s$: water content at 0.1bar, ${\Theta}r$: water content at 15bar, H: soil water tension (matric potential) (bar) Relative sensitivity of soil water content was decreased as increase soil water tension, those according to soil water tension were 0.952~0.620 compared to 0.1bar case. Relative sensitivity of scale factor was also decreased as increase soil water tension, those according to soil water tension were 0.890~0.577 compared to 0.2bar case.

Keywords

References

  1. Ahuja, L.R., J.W. Naney, and R.D. Williams. 1985. Estimation soil water characteristics from simple properties or limited data. Soil Sci. Soc. Am. J. 49:1100-1105. https://doi.org/10.2136/sssaj1985.03615995004900050005x
  2. Al-Badran, Y. and T. Schanz 2014. Modelling the compaction curve of fine-grained soils. Soils & Found. 54:426-438. https://doi.org/10.1016/j.sandf.2014.04.011
  3. Aldaood, A., M. Bouasker, and M. Al-Mukhtan. 2014. Soilwater characteristics curve of lime treated gypseous soil. Appl. Clay Sci. 102:128-138. https://doi.org/10.1016/j.clay.2014.09.024
  4. Bird, N.R.A., E. Perrier, and M. Rieu. 2000, The water retention function for a model of soil structure whit pore and solid fractal distributions. Eur. J. Soil Sci. 51:55-63. https://doi.org/10.1046/j.1365-2389.2000.00278.x
  5. Bird, N.R.A. and E. Perrier. 2003. The pore-Solid Fractal model of soil density scaling. Eur. J. Soil Sci. 54:467-476. https://doi.org/10.1046/j.1365-2389.2003.00481.x
  6. Brooks R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Hydrology paper No. 3, Colorado State University, Fort Collins. 1964.
  7. Campbell, G.S. 1974, A sample method for determining unsaturated conductivity from moisture retention data, Soil Sci. 117:311-314. https://doi.org/10.1097/00010694-197406000-00001
  8. Cheng, X., M. Huang, B.C. Si, M. Yu, and M. Shao. 2013, The differences of water balance components of Caragana korshinkii grown in homogeneous and layered soils in the desert-Loess Plateau transition zone. J. Arid Environ. 98:10-19. https://doi.org/10.1016/j.jaridenv.2013.07.007
  9. Chiu, C.F., W.M. Yan, and K.V. Yeng. 2012. Reliability analysis of soil water characteristics curve and its application to slope stability analysis. Eng. Geol. 135-136(15):83-91. https://doi.org/10.1016/j.enggeo.2012.03.004
  10. Cresswell, H.P. and Z. Paydar. 1996. Water retention in Australian soils. I. Description and prediction using parametric functions. Aust. J. Soil Res. 34:195-212. https://doi.org/10.1071/SR9960195
  11. Cresswell, H.P. and A. Lilly. 2015. A two-point method for determining the soil water characteristics of typical northern temperature boreal soils. Geoderma Regional. 5:71-76. https://doi.org/10.1016/j.geodrs.2015.04.001
  12. Eom, K.C., K.S. Ryu, and K.T. Um. 1988. Comparison of the measurement methods of soil water content by error analysis. Korean J. Soil Sci. Fert. 21(4):367-372.
  13. Eom, K.C., K.C. Song, K.S. Ryu, Y.K. Sonn, and S.E. Lee. 1995. Model equations to estimate the soil water characteristics curve using scaling factor. Korean J. Soil Sci. Fert. 28(3):227-232.
  14. Eom, K.C. and K.R. Eom. 2008. Mathematics for agricultural sciences. Daewon Publishers, Korea, Seoul. 438-491.
  15. Eom, K.C. and H.Y. Eom. 2013. Estimation model of the change in dairy leaf surface temperature using scaling technique. Korean J. Soil Sci. Fert. 46(5):359-364. https://doi.org/10.7745/KJSSF.2013.46.5.359
  16. Fredlund, D.G. and A. Xing. 1994, Equations for the soilwater characteristics curve. Can. Geotech. J. 31(3):521-532. https://doi.org/10.1139/t94-061
  17. Ghanbarian, B., V. Taslimitehrani, G. Dong, and Y.A. Pachepsky. 2015. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity. J. Hydrol. 528:127-137. https://doi.org/10.1016/j.jhydrol.2015.06.024
  18. Hillel, D. and D.E. Erick. 1990. Scaling in soil physics : Principles and applications. Soil Science Society of America, Inc. Madison, Wisconsin, USA. 300-318.
  19. Hutson, J.L. and A. Cass. 1987. A retentivity function for use in soil water simulation models. J. Soil Sci. 38:105-113. https://doi.org/10.1111/j.1365-2389.1987.tb02128.x
  20. Kim D.H., G. Kim, and H. Baek. 2015. Relationship between thermal conductivity and soil water characteristics curve of pure bentonit based grout. Inter. J.H. & M.T. 84:1049-1055.
  21. Kosugi, K. 1996, Lognormal distribution model for unsaturated soil hydraulic properties, Water Resour. Res. 32:2697-2703. https://doi.org/10.1029/96WR01776
  22. Leong, E.C. and H. Rahardjo, 1997. Review of soil-water characteristics curve equations. J. Geo. & Geo. Eng. 123(12):1106-1117. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1106)
  23. Liu, Q., N. Yasufuku, K. Omine, and H. Hazarika. 2012. Automatic soil water retention test system with volume change measurement for sandy and silty soils. Soils & Found. 52:368-380. https://doi.org/10.1016/j.sandf.2012.02.012
  24. Malamos, N., P.E. barouchas, A. L-Tsakalidi, A. Koulopoulos, I. Chatziioakeim, Ph. Vitiniotis, and Ch. Chalvatzis. 2015. Soil hydrodynamic characteristics of reclaimed agricultural land at Messolonghi's polder. Agric. Agric. Sci. Procedia. 4:282-289. https://doi.org/10.1016/j.aaspro.2015.03.032
  25. Mandel, J. 1964.. The statistical analysis of experimetal data. John Wiley & Sons, New York, 58-77, 363-389.
  26. Miller, E.E. and R.D. Miller. 1955. Theory of capillary flow : II. Experimental information. Soil Sci. Soc. Am. Proc. 19:271-275. https://doi.org/10.2136/sssaj1955.03615995001900030006x
  27. Mollinedo, J., T.E. Schumacher, and R. Chintata. 2015. Influnce of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics. J.A.& A. P. 114:100-108.
  28. Patricia, M.T. and D.R. Nielsen. 1984. Scale factors in soil science. Soil Sci. Soc. Am. J. 48:953-959. https://doi.org/10.2136/sssaj1984.03615995004800050001x
  29. Pedroso, D. M., D.S. Chao, and J.Z. Dong. 2009. The concept of reference curves for constitutive modeling in soil mechanics. Comput. Geotech. 36:149-165. https://doi.org/10.1016/j.compgeo.2008.01.009
  30. Pirone, M., R. Papa, M.V. Nicotera, and G. Urciuoli. 2014, Evaluation of the hydraulic hysteresis of unsaturated pyroclastic soils by in situ measurements. Proc. Earth & Pl. Sci. 9:163-170. https://doi.org/10.1016/j.proeps.2014.06.014
  31. Rahimi, A., H. Rahardjo, and E.C. Leong. 2015. Effect of range of soil-water characteristics curve measurements on estimation of permeability function. Eng. Geol. 185(5):96-104. https://doi.org/10.1016/j.enggeo.2014.11.017
  32. Reichardt K., D.R. Nielsen, and J.W. Biggar. 1972. Scaling of horizontal infiltration into homogenous soils. Soil Sci. Soc. Am. Proc. 36:241-245. https://doi.org/10.2136/sssaj1972.03615995003600020014x
  33. Reichardt, K., P.L. Libardi, and D.R. Nielsen. 1975. Unsaturated hydraulic conductivity determination by a scaling technique. Soil Sci. 120:165-168. https://doi.org/10.1097/00010694-197509000-00001
  34. Rieu, M. and G. Sposito. 1991. Fractal fragmentation soil porosity and soil water properties : I. Theory. Soil Sci. Soc. Am. J. 55:1231-1238. https://doi.org/10.2136/sssaj1991.03615995005500050006x
  35. Satyamaga A., H. Rahardjo, E.C. Leong, and J.Y. Wang. 2013. Water characteristics curve of soil with bimoda grain-size distribution. Comput. Geotech. 48:51-61. https://doi.org/10.1016/j.compgeo.2012.09.008
  36. Shao, X., Y. Wang, L.D. Bl, Y.B. Yuan, X.K. Su, and J.G. Mo. 2009. Study on soil water characteristics of tobacco fields based on canonical correlation analysis. Water Sci. Eng. 2(2):79-86. https://doi.org/10.3882/j.issn.1674-2370.2009.02.009
  37. Sun, W., D. Sun, L. Fang, and S. Liu. 2014. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique. J. Rock Mech. & Geo. Eng. 6:48-54. https://doi.org/10.1016/j.jrmge.2013.12.004
  38. Tyler S.W. and S.W. Wheatcraft. 1990. Fractal processes in soil water retention. Resour. Res. 26:1047-1054. https://doi.org/10.1029/WR026i005p01047
  39. van Genuchten, M.T. 1980, A close form equation predicting the hydraulic conductivity of unsaturated soil. Soil Sci. Soc. Am. J. 44:892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  40. Veltri, M., G. Severino, S. DeBartolo, C. Fallico, and A. Santini. 2013. Scaling analysis of water retention curves : a multi-fractal approach. Procedia Environ. Sci. 19:618-622. https://doi.org/10.1016/j.proenv.2013.06.070
  41. Wang, K., R. Zhang, and F. Wang. 2005. Testing the poresolid fractal model for the soil water retention function. Soil Sci. Soc. Am. J. 69:776-782. https://doi.org/10.2136/sssaj2004.0247
  42. Zhai, Q. and H. Rahardjo. 2012. Determination of soil water characteristics curve variables. Comput. Geotech. 42:37-43. https://doi.org/10.1016/j.compgeo.2011.11.010
  43. Zhai, Q. and H. Rahardjo, 2013. Quantification on uncertainties in soil-water characteristics curve associated with fitting parameters. Eng. Geol. 63:144-152.
  44. Zhang, Y., T. Ishikawa, T. Tokoro, and T. Nishimura. 2014. Influences of degree of saturation and strain rate on strength charateristics of unsaturated granular subbase coarse material. Trans. Geo. 1(2014):74-89.