DOI QR코드

DOI QR Code

Dependence of CW Mode Locking on Resonator Mode Size in a Yb:YAG Laser Mode-Locked by a Semiconductor Saturable Absorber Mirror

반도체 포화 흡수체 반사경에 의해 모드 잠금된 Yb:YAG 레이저 출력의 공진기 모드 크기에 대한 의존성 연구

  • Kim, Hyun Chul (Department of Photonic Engineering, Chosun University) ;
  • Lim, Han Bum (Department of Photonic Engineering, Chosun University) ;
  • Chae, Dong Won (Department of Photonic Engineering, Chosun University) ;
  • Kim, Hyun Su (Department of Photonic Engineering, Chosun University)
  • 김현철 (조선대학교 광기술공학과) ;
  • 임한범 (조선대학교 광기술공학과) ;
  • 채동원 (조선대학교 광기술공학과) ;
  • 김현수 (조선대학교 광기술공학과)
  • Received : 2015.07.03
  • Accepted : 2015.11.09
  • Published : 2015.12.25

Abstract

We investigate the effect of laser-resonator mode size on the output of a Yb:YAG laser that is mode-locked by a semiconductor saturable absorber mirror (SESAM). We demonstrate that the smaller the product of the mode sizes at a SESAM and at a Yb:YAG crystal, the more stable the mode-locked output is. Also, we found numerically that there is a resonator length at which the mode-locked output occurs, regardless of the thermal lens effect of a Yb:YAG.

레이저 공진기 모드 크기가 반도체 포화 흡수체 거울(SESAM)을 이용하여 모드 잠금된 Yb:YAG 레이저의 출력에 주는 영향을 조사하였다. SESAM과 Yb:YAG 매질 위치에서 공진 모드들 크기를 곱한 값이 작을수록 모드 잠금이 안정적으로 발생함을 실험적으로 보였다. 수치적으로 레이저 매질의 열 렌즈 효과와 무관하게 모드 잠금이 이루어지는 공진기 길이 조건이 있음을 확인하였다.

Keywords

References

  1. W. F. Krupke, "Ytterbium solid-state lasers-the first decade," IEEE J. Select. Topic Quantum Eelectron. 6, 1287-1296 (2000). https://doi.org/10.1109/2944.902180
  2. W. Koechner and M. Bass, Solid-State Lasers (Springer-Verlag, New York, 2003).
  3. A. Giesen, H. Hiige, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
  4. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Quantum Electron. 2, 435-453 (1996). https://doi.org/10.1109/2944.571743
  5. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuouswave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999). https://doi.org/10.1364/JOSAB.16.000046
  6. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, "Mode-locked Yb:YAG thin-disk oscillator with 41 ${\mu}J$ pulse energy at 145 W average infrared power and high power frequency conversion," Opt. Express 20, 9698-9704 (2012). https://doi.org/10.1364/OE.20.009698
  7. C. Y. Ahan, H. C. Kim, H. B. Lim, and H. S. Kim, "Output characteristics of a Yb:YAG laser Q-switched by a semiconductor saturable absorber and an output coupler composed of a polarizer and a quarter-wave plate," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 25, 90-94 (2014). https://doi.org/10.3807/KJOP.2014.25.2.090
  8. H. Kogelik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966). https://doi.org/10.1364/AO.5.001550
  9. H. C. Kim, H. B. Lim, and H. S. Kim, "A linearly polarized long-cavity Yb:YAG laser with a variable-reflectivity output coupler," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 26, 38-43 (2015). https://doi.org/10.3807/KJOP.2015.26.1.038
  10. C. Y. Ahan, D. J. Moon, M. J. Kim, and H. S. Kim, "Output characteristics of a Yb:YAG disk laser with a curved dichroic mirror for a longitudinal pumping," New Physics: Sae Mulli 62, 142-147 (2012). https://doi.org/10.3938/NPSM.62.142