DOI QR코드

DOI QR Code

Simulation of Energy Absorption Distribution using of Lead Shielding in the PET/CT

PET/CT 검사에서 납 차폐체 사용에 따른 에너지 흡수 분포에 관한 모의실험

  • Jang, Dong-Gun (Department of Nuclear Medicine, Dongnam Institute of Radiological & Medical Sciences Cancer center) ;
  • Kim, Changsoo (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan) ;
  • Kim, Junghoon (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 장동근 (동남권 원자력의학원 핵의학과) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2015.09.23
  • Accepted : 2015.12.25
  • Published : 2015.12.31

Abstract

Energy absorption distribution according to lead shielding for 511 keV ${\gamma}$ ray was evaluated using a Monte Carlo simulation in PET/CT. Experimental method was performed about the depth of skin surface(0.07), lens(3) and the depth(10) was conducted by using ICRU Slab phantom. Difference of energy absorption distribution according to lead thickness and effect of air gap according to distance of lead and phantom. As a result, study showed that using a lead shielding makes high energy distribution by backscatter electron. As a distance between lead and phantom increased, energy absorption distribution gradually decreased. 9 cm or more air gap should exist to prevent effect of backscatter electron which reaches skin surface, when 0.25 mmPb shielding is used. Also 1 cm or more air gap was needed to prevent the effect in 0.5 mmPb. If air gap was not concerned, 0.75 mm or more lead thickness was necessary to prevent effect of backscatter electron.

PET/CT에서 사용되는 511 keV ${\gamma}$선의 납 차폐체 사용 유 무에 따른 에너지 흡수 분포를 몬테카를로 모의 모사를 통해 평가하였다. 실험은 ICRU Slab 팬텀을 이용하여 깊이에 따라 피부표면(0.07), 수정체(3), 심부(10)에 대해 실험을 진행하였으며, 납 두께에 따른 에너지 흡수 분포 차이와 납과 팬텀의 거리에 따른 공기층의 영향에 대해 분석 하였다. 그 결과 납 차폐체 사용 시 산란전자선에 의해 피부표면에 에너지 흡수 분포가 높게 나타났다. 산란전자선선은 납과 팬텀 사이의 거리가 증가함에 따라 점차 제거되었으며, 0.25 mm 납 차폐체 사용 시 9 cm 이상의 공기층이 있어야 피부표면의 도달하는 산란전자선의 영향을 방지 할 수 있었다. 또한 0.5 mm의 납 차폐체 사용 시 1 cm 이상의 공기층이 있어야 피부표면에 도달하는 산란전자선의 영향을 방지 할 수 있었으며, 공기층을 고려하지 않을 경우 0.75 mm이상의 납 두께를 사용하여야 피부표면의 산란전자선의 영향을 방지 할 수 있다.

Keywords

References

  1. Benjamin Guillet, Pierre Quentin, Serge Waultier, P, "Technologist Radiation Exposure in Routine Clinical Practice with 18F-FDG PET", Journal of Nuclear Medicine Technology, Vol. 33, No. 3, pp.175-179, 2005.
  2. Fiona O. Roberts, Dishan H. Gunawardana, Kunthi Pathmaraj, et al, "Radiation Dose to PET Technologists and Strategies to lower Occupational Exposure", Journal of Nuclear Medicine Technology, Vol. 33, No. 1, pp.44-47, 2005.
  3. ICRP, "Recommendations of the International Commission on Radiological Protection", Ann ICRP, Vol. 21, pp.1-201, 1991. https://doi.org/10.1016/0146-6453(91)90009-6
  4. Korea Standards & certifications, "Medical X-ray Protective Aprons", KS P 6023, 2007.
  5. Myeong-Hwan Park, Deok-Moon Kwon, "Measurement of Apron Shielding rate for X-ray and Gamma ray", Korean Society Radiological Science, Vol. 30, No. 3, pp.245-250, 2007.
  6. Andrew J Reilly, "Report 78 Spectrum Processor", IPEM, 1997.
  7. Yong-Gil Kang, "Textbook of nuclear Medicine", pp.81-86, 2013.
  8. Hongmoon Jung, June ho Cho, Jaeeun Jung, et al, "Evaluation of the Radiation Dosage Flowing out of the Hot Cell During Synthesis of $^{18}FDG$", Journal of the Korean Society of Radiology, Vol. 7, No. 5, pp365-369, 2013. https://doi.org/10.7742/jksr.2013.7.5.365
  9. Bong-Sik Lim, "Radiation Exposure Dose on Persons Engaged in Radiation-related Industries in Korea", The Korean Society of Radiological Science, Vol. 29, No. 3, pp.185-195, 2006.
  10. Seongmin Baek, Eunsung Jang, "Comparative evaluation of radiation exposure in radiation-related workers", Journal of the Korean Society of Radiology, Vol. 5, No. 4, pp195-200, 2011. https://doi.org/10.7742/jksr.2011.5.4.195
  11. Seoung-wook Lee, Seung-hyun Kim, Bong-geun Ji, et al, "A Consideration of Apron's Shielding in Nuclear Medicine Working Environment", korean J. Nucl. Med. Technol., Vol. 18, No. 1, pp.110-114, 2014.
  12. Soo-Kyung Na, Byung-Sub Park, Yong-Gil Kang, "Study of occupational exposure in PET/CT", journal of Digital Convergence, Vol. 10, No. 11, pp.449-457, 2012. https://doi.org/10.14400/JDPM.2012.10.11.449
  13. Yong Hyun Chung, Cheol-Ha Beak, Seung-Jae Lee, "Monte Carlo Simulation Codes for Nuclear Medicine Imaging", Med. Mol. Imaging, Vol. 42, No. 2, pp.127-136, 2008.
  14. ICRU, "Measurement of Dose Equivalents from External Photon and Electron Radiations", Report 47 ICRU Publications, 1998.
  15. Dae Moo Shim, Yu Mi Kim, Sung Kyun Oh, et al, "Radiation Induced Hand Necrosis of an Orthopaedic Surgeon Who Had Treated a Patient with Fluoroscopy-Guided Spine Injection", The Journal of the Korean Orthopaedic Association, Vol. 49, No. 3 , pp.250-254, 2014. https://doi.org/10.4055/jkoa.2014.49.3.250
  16. Wang-Hui Lee, Sung-Min Ahn, "Evaluation of Reductive Effect of Exposure Dose by Using Air Gap Apron in Nuclear Medicine Related Work Dose", The Korea Contents Association, Vol. 14, No. 12, pp.845-853, 2014. https://doi.org/10.5392/JKCA.2014.14.12.845

Cited by

  1. 안티몬 차폐시트의 감마선 차폐 성능평가 vol.41, pp.2, 2018, https://doi.org/10.17946/jrst.2018.41.2.135
  2. PET/CT실에서 사용되는 주사기 차폐체의 산란선 측정 vol.43, pp.5, 2015, https://doi.org/10.17946/jrst.2020.43.5.375
  3. 핵의학 검사 후 환자의 주위 환경에 따른 표면 선량 평가 vol.15, pp.7, 2021, https://doi.org/10.7742/jksr.2021.15.7.943