DOI QR코드

DOI QR Code

Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential

  • Fang, Ting-Ting (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Sun, Xiao-Jing (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Chen, Jie (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Zhao, Yan (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Sun, Rui-Xia (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Ren, Ning (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Liu, Bin-Bin (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital)
  • Published : 2015.01.06

Abstract

Background: Metastasis is a major reason for poor prognosis in patients with cancer, including hepatocellular carcinoma (HCC). A salient feature is the ability of cancer cells to colonize different organs. Long non-coding RNAs (lncRNAs) play important roles in numerous cellular processes, including metastasis. Materials and Methods: In this study, the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2) were assessed using the Arraystar Human LncRNA Array v2.0, which contains 33,045 lncRNAs and 30,215 mRNAs. Coding-non-coding gene co-expression (CNC) networks were constructed and gene set enrichment analysis (GSEA) was performed to identify lncRNAs with potential functions in organ-specific metastasis. Levels of two representative lncRNAs and one representative mRNA, RP5-1014O16.1, lincRNA-TSPAN8 and TSPAN8, were further detected in HCC cell lines with differing metastasis potential by qRT-PCR. Results: Using microarray data, we identified 1,482 lncRNAs and 1,629 mRNAs that were differentially expressed (${\geq}1.5$ fold-change) between the two HCC cell lines. The most upregulated lncRNAs in H2 were RP11-672F9.1, RP5-1014O16.1, and RP11-501G6.1, while the most downregulated ones were lincRNA-TSPAN8, lincRNA-CALCA, C14orf132, NCRNA00173, and CR613944. The most upregulated mRNAs in H2 were C15orf48, PSG2, and PSG8, while the most downregulated ones were CALCB, CD81, CD24, TSPAN8, and SOST. Among them, lincRNA-TSPAN8 and TSPAN8 were found highly expressed in high lung metastatic potential HCC cells, while lowly expressed in no or low lung metastatic potential HCC cells. RP5-1014O16.1 was highly expressed in high lymphatic metastatic potential HCC cell lines, while lowly expressed in no lymphatic metastatic potential HCC cell lines. Conclusions: We provide the first detailed description of lncRNA expression profiles related to organ-specific metastasis in HCC. We demonstrated that a large number of lncRNAs may play important roles in driving HCC cells to metastasize to different sites; these lncRNAs may provide novel molecular biomarkers and offer a new basis for combating metastasis in HCC cases.

Keywords

References

  1. Barabasi AL (2004). Network biology: Understanding the cell's functional organization. Nat Rev Genet, 5, 101-15. https://doi.org/10.1038/nrg1272
  2. Bartel DP (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-33. https://doi.org/10.1016/j.cell.2009.01.002
  3. Berteaux N, Aptel N, Cathala G, et al (2008). A novel H19 antisense rna overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol, 28, 6731-45. https://doi.org/10.1128/MCB.02103-07
  4. Bertone P, Stolc V, Royce TE, et al (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242-6. https://doi.org/10.1126/science.1103388
  5. Braconi C, Valeri N, Kogure T, et al (2011). Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Nat Acad Sci USA, 108, 786-91. https://doi.org/10.1073/pnas.1011098108
  6. Bussemakers M, Verhaegh GW, Karthaus H, et al (1999). DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res, 59.
  7. Cabili MN, Trapnell C, Goff L, et al (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 25, 1915-27. https://doi.org/10.1101/gad.17446611
  8. Chen W, Bocker W, Brosius J, et al (1997). Expression of neural BC200 RNA in human tumours. J Pathol, 183, 345-51. https://doi.org/10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8
  9. Da Sacco L, Baldassarre A, Masotti A (2012). Bioinformatics Tools and Novel Challenges in Long Non-Coding RNAs (lncRNAs). Functional Analysis. Int J Mol Sci, 13, 97-114.
  10. de Kok JB, Verhaegh GW, Roelofs RW, et al (2002). DD3 (PCA3)., a very sensitive and specific marker to detect prostate tumors. Cancer Res, 62, 2695-8.
  11. Dexter DL, Kowalski HM, Blazar BA, et al (1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res, 38, 3174-81.
  12. Fejes-Toth K, Sotirova V, Sachidanandam R, et al (2009). Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature, 457, 1028-32. https://doi.org/10.1038/nature07759
  13. Fritah A, Saucier C, De Wever O, et al (2008). Role of WISP-2/ CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol Cell Biol, 28, 1114-23. https://doi.org/10.1128/MCB.01335-07
  14. Genda T, Ichida T, Kojiro M, et al (1999). Cell motility mediated by Rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology, 30, 1027-36. https://doi.org/10.1002/hep.510300420
  15. Gesierich S, Berezovskiy I, Ryschich E, et al (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res, 66, 7083-94. https://doi.org/10.1158/0008-5472.CAN-06-0391
  16. Guo FJ, Li YL, Liu Y, et al (2010). Inhibition of metastasisassociated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin, 42, 224-9. https://doi.org/10.1093/abbs/gmq008
  17. Gupta RA, Shah N, Wang KC, et al (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071-6. https://doi.org/10.1038/nature08975
  18. Guttman M, Amit I, Garber M, et al (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223-7. https://doi.org/10.1038/nature07672
  19. Guttman M, Donaghey J, Carey BW, et al (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295-300. https://doi.org/10.1038/nature10398
  20. Guttman M, Rinn JL (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482, 339-46. https://doi.org/10.1038/nature10887
  21. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. https://doi.org/10.1016/j.cell.2011.02.013
  22. He Y, Meng XM, Huang C, et al (2014). Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett, 344, 20-7. https://doi.org/10.1016/j.canlet.2013.10.021
  23. Hibi K, Nakamura H, Hirai A, et al (1996). Loss of H19 imprinting in esophageal cancer. Cancer Res, 56, 480-2.
  24. Hong SS, Kim TK, Sung KB, et al (2003). Extrahepatic spread of hepatocellular carcinoma: a pictorial review. Eur Radiol, 13, 874-82.
  25. Iacoangeli A, Lin Y, Morley EJ, et al (2004). BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis, 25, 2125-33. https://doi.org/10.1093/carcin/bgh228
  26. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA-Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  27. Ji P, Wang WB, Metzger R, et al (2003). MALAT-1, a novel noncoding RNA, and thymosin beta 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-41. https://doi.org/10.1038/sj.onc.1206928
  28. Kanetaka K, Sakamoto M, Yamamoto Y, et al (2001). Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol, 35, 637-42. https://doi.org/10.1016/S0168-8278(01)00183-0
  29. Kanetaka K, Sakamoto M, Yamamoto Y, et al (2003). Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol, 18, 1309-14. https://doi.org/10.1046/j.1440-1746.2003.03182.x
  30. Kapranov P, Cawley SE, Drenkow J, et al (2002). Large-scale transcriptional activity in chromosomes 21 and 22. Science, 296, 916-9. https://doi.org/10.1126/science.1068597
  31. Khalil AM, Guttman M, Huarte M, et al (2009). Many human large intergenic noncoding RNAs associate with chromatinmodifying complexes and affect gene expression. Proc Natl Acad Sci U S A, 106, 11667-72. https://doi.org/10.1073/pnas.0904715106
  32. Kmita M, Duboule D (2003). Organizing axes in time and space; 25 years of colinear tinkering. Science, 301, 331-3. https://doi.org/10.1126/science.1085753
  33. Lemons D, McGinnis W (2006). Genomic evolution of Hox gene clusters. Science, 313, 1918-22. https://doi.org/10.1126/science.1132040
  34. Li Y, Tang Y, Ye L, et al (2003). Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol, 129, 43-51.
  35. Li Y, Tang ZY, Ye SL, et al (2001). Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol, 7, 630-6.
  36. Lin R, Maeda S, Liu C, et al (2007). A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26, 851-8. https://doi.org/10.1038/sj.onc.1209846
  37. Llovet JM, Lencioni R, Gaile PR, et al (2012). EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 56, 908-43. https://doi.org/10.1016/j.jhep.2011.12.001
  38. Lu X, Kang Y (2007). Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia, 12, 153-62. https://doi.org/10.1007/s10911-007-9047-3
  39. Matouk IJ, Abbasi I, Hochberg A, et al (2009). Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol, 21, 688-92. https://doi.org/10.1097/MEG.0b013e328306a3a2
  40. Mercer TR, Dinger ME, Mattick JS (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet, 10, 155-9. https://doi.org/10.1038/nrg2521
  41. Mootha VK, Lindgren CM, Eriksson KF, et al (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34, 267-73. https://doi.org/10.1038/ng1180
  42. Mourtada-Maarabouni M, Pickard MR, Hedge VL, et al (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28, 195-208. https://doi.org/10.1038/onc.2008.373
  43. Nguyen DX, Bos PD, Massague J (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer, 9, 274-84. https://doi.org/10.1038/nrc2622
  44. Nupponen NN, Carpten JD (2001). Prostate cancer susceptibility genes: many studies, many results, no answers. Cancer Metastasis Rev, 20, 155-64. https://doi.org/10.1023/A:1015557308033
  45. Ohta M, Seto M, Miyabayashi K, et al (2009). Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology, 136, 206-16. https://doi.org/10.1053/j.gastro.2008.09.063
  46. Okazaki Y, Furuno M, Kasukawa T, et al (2002). Analysis of the mouse transcriptome based on functional annotation of 60, 770 full-length cDNAs. Nature, 420, 563-73. https://doi.org/10.1038/nature01266
  47. Orom UA, Derrien T, Beringer M, et al (2010). Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell, 143, 46-58. https://doi.org/10.1016/j.cell.2010.09.001
  48. Panzitt K, Tschernatsch MM, Guelly C, et al (2007). Characterization of HULC, a novel gene with striking upregulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology, 132, 330-42. https://doi.org/10.1053/j.gastro.2006.08.026
  49. Pibouin L, Villaudy J, Ferbus D, et al (2002). Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet, 133, 55-60. https://doi.org/10.1016/S0165-4608(01)00634-3
  50. Ponting CP, Oliver PL, Reik W (2009). Evolution and Functions of Long Noncoding RNAs. Cell, 136, 629-41. https://doi.org/10.1016/j.cell.2009.02.006
  51. Poon R, Wong J (2000). Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg, 232.
  52. Prieto C, Risueno A, Fontanillo C, et al (2008). Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS Onee, 3.
  53. Qiao HP, Gao WS, Huo JX, et al (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev, 14, 1077-82. https://doi.org/10.7314/APJCP.2013.14.2.1077
  54. Qiu MT, Hu JW, Yin R, et al (2013). Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol, 34, 613-20. https://doi.org/10.1007/s13277-013-0658-6
  55. Rangel L, Wernyj RP, Cho KR (2003). Characterization of novel human ovarian cancer-specific transcripts (HOSTs). identified by serial analysis of gene expression. Oncogene, 22, 7225-32. https://doi.org/10.1038/sj.onc.1207008
  56. Ren S, Wang F, Shen J, et al (2013). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer, 49, 2949-59. https://doi.org/10.1016/j.ejca.2013.04.026
  57. Rinn JL, Wang JK, Xu X, et al (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by Noncoding RNAs. Cell, 129, 1311-23. https://doi.org/10.1016/j.cell.2007.05.022
  58. Seto M, Ohta M, Ikenoue T, et al (2011). Reduced expression of RAS protein activator like-1 in gastric cancer. Int J Cancer, 128, 1293-302. https://doi.org/10.1002/ijc.25459
  59. Simon JA, Kingston RE (2009). Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol, 10, 697-708. https://doi.org/10.1038/nrn2731
  60. Smedley D, Sidhar S, Birdsall S, et al (2000). Characterization of chromosome 1 abnormalities in malignant melanomas. Genes Chromosomes Cancer, 28, 121-5. https://doi.org/10.1002/(SICI)1098-2264(200005)28:1<121::AID-GCC14>3.0.CO;2-O
  61. Sporn JC, Kustatscher G, Hothorn T, et al (2009). Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene, 28, 3423-8. https://doi.org/10.1038/onc.2009.26
  62. Subramanian A, Tamayo P, Mootha VK, et al (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102, 15545-50. https://doi.org/10.1073/pnas.0506580102
  63. Sun FX, Tang ZY, Lui KD, et al (1996). Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int J Cancer, 66, 239-43. https://doi.org/10.1002/(SICI)1097-0215(19960410)66:2<239::AID-IJC17>3.0.CO;2-7
  64. Taft RJ, Pang KC, Mercer TR, et al (2010). Non-coding RNAs: regulators of disease. J Pathol, 220, 126-39. https://doi.org/10.1002/path.2638
  65. Talmadge JE, Fidler IJ (2010). AACR Centrspective. Cancer Res, 70, 5649-69. https://doi.org/10.1158/0008-5472.CAN-10-1040
  66. Tinzl M, Horvath S (2004). DD3 (PCA3). RNA analysis in urine - A new perspective for detecting prostate cancer. Eur Urol, 46, 182-7. https://doi.org/10.1016/j.eururo.2004.06.004
  67. Uchino H, Kataoka H, Itoh H, et al (2000). Overexpression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo. Gastroenterol, 118, 60-9. https://doi.org/10.1016/S0016-5085(00)70414-8
  68. Wang JY, Liu XF, Wu HC, et al (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res, 38, 5366-83. https://doi.org/10.1093/nar/gkq285
  69. Wang Y, Liu XJ, Yao XD (2014). Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score. Chin J Cancer Res, 26, 493-500.
  70. Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends Cell Biol, 21, 354-61. https://doi.org/10.1016/j.tcb.2011.04.001
  71. Wilusz JE, Sunwoo H, Spector DL (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 23, 1494-504. https://doi.org/10.1101/gad.1800909
  72. Xie H, Ma H, Zhou D (2013). Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int, 2013, 136106.
  73. Yamada K, Kano J, Tsunoda H, et al (2006). Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci, 97, 106-12. https://doi.org/10.1111/j.1349-7006.2006.00147.x
  74. Yang F, Zhang L, Huo XS, et al (2011). Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 54, 1679-89. https://doi.org/10.1002/hep.24563
  75. Ye QH, Forgues M, Kim JW, et al (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med, 9, 416-23. https://doi.org/10.1038/nm843
  76. Yue S, Mu W, Zoller M (2013). Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer, 49, 2934-48. https://doi.org/10.1016/j.ejca.2013.03.032
  77. Zhang EB, Han L, Yin DD, et al (2014). c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol, 31, 914. https://doi.org/10.1007/s12032-014-0914-7
  78. Zhang H, Cai K, Wang J, et al (2014). MiR-7, Inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells, 32, 2858-68. https://doi.org/10.1002/stem.1795

Cited by

  1. Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas vol.10, pp.1662-5102, 2016, https://doi.org/10.3389/fncel.2016.00235
  2. C14orf132 gene is possibly related to extremely low birth weight vol.17, pp.1, 2016, https://doi.org/10.1186/s12863-016-0439-5
  3. Potential diagnostic value of lncRNA SPRY4-IT1 in hepatocellular carcinoma vol.36, pp.2, 2016, https://doi.org/10.3892/or.2016.4859
  4. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma vol.77, pp.3, 2016, https://doi.org/10.1007/s00280-016-2964-3
  5. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer vol.77, pp.5, 2016, https://doi.org/10.1007/s00280-016-3029-3
  6. Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma pp.1532-2807, 2017, https://doi.org/10.1007/s12253-017-0241-3
  7. A three-lncRNA expression signature predicts survival in head and neck squamous cell carcinoma (HNSCC) vol.38, pp.6, 2018, https://doi.org/10.1042/BSR20181528
  8. study of the role of long non-coding RNA-HOST2 in the proliferation, migration, and invasion of human glioma cells pp.15216543, 2018, https://doi.org/10.1002/iub.1943
  9. Knockdown long non-coding RNA ANRIL inhibits proliferation, migration and invasion of HepG2 cells by down-regulation of miR-191 vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4831-6
  10. Systematic analyses of a novel lncRNA-associated signature as the prognostic biomarker for Hepatocellular Carcinoma vol.7, pp.7, 2018, https://doi.org/10.1002/cam4.1541
  11. Transforming Growth Factor-β and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma vol.69, pp.1, 2018, https://doi.org/10.1002/hep.30166