DOI QR코드

DOI QR Code

Characteristics of Sapphire Wafers Polishing Depending on Ion Conductivity of Silica Sol

실리카졸의 이온전도도 변화에 따른 사파이어 웨이퍼의 연마 특성

  • Na, Ho Seong (Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Cho, Gyeong Sook (Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Lee, Dong-Hyun (Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Park, Min-Gyeong (Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Kim, Dae Sung (Korea Institute of Ceramic Engineering & Technology(KICET)) ;
  • Lee, Seung-Ho (Korea Institute of Ceramic Engineering & Technology(KICET))
  • 나호성 (한국세라믹기술원 에너지환경소재본부) ;
  • 조경숙 (한국세라믹기술원 에너지환경소재본부) ;
  • 이동현 (한국세라믹기술원 에너지환경소재본부) ;
  • 박민경 (한국세라믹기술원 에너지환경소재본부) ;
  • 김대성 (한국세라믹기술원 에너지환경소재본부) ;
  • 이승호 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2014.11.06
  • Accepted : 2014.12.04
  • Published : 2015.01.27

Abstract

CMP(Chemical Mechanical Polishing) Processes have been used to improve the planarization of the wafers in the semiconductor manufacturing industry. Polishing performance of CMP Process is determined by the chemical reaction of the liquid sol containing abrasive, pressure of the head portion and rotational speed of the polishing pad. However, frictional heat generated during the CMP process causes agglomeration of the particles and the liquidity degradation, resulting in a non-uniform of surface roughness and surface scratch. To overcome this chronic problem, herein, we introduced NaCl salt as an additive into silica sol for elimination the generation of frictional heat. The added NaCl reduced the zata potential of silica sol and increased the contact surface of silica particles onto the sapphire wafer, resulting in increase of the removal rate up to 17 %. Additionally, it seems that the silica particles adsorbed on the polishing pad decreased the contact area between the sapphire water and polishing pad, which suppressed the generation of frictional heat.

Keywords

References

  1. H. C. Lee, Korean. J. Ceram., 14(5), 7 (2011) (in Korean).
  2. H. Tang, H. C. Li and J. Xu, InTech., 308 (2013).
  3. W. Xu, X. Lu, G. Pan, Y. Lei and J. Luo, Appl. Surf. Sci., 257(7), 2905 (2011). https://doi.org/10.1016/j.apsusc.2010.10.088
  4. H. Aida, T. Doi, H. Takeda, H. Katakura, S. W. Kim, K. Koyama, T. Yamazaki and M. Uneda, Curr. Appl. Phys., 12, S41 (2012). https://doi.org/10.1016/j.cap.2012.02.016
  5. P. Kumar, J. Lee, G. Lee, S. Rao, D. Singh and R. K. Singh, Appl. Surf. Sci., 273, 58 (2013). https://doi.org/10.1016/j.apsusc.2013.01.137
  6. A. Tamhankar and R. Patel, ICALEO, (2010).
  7. Z. Zhang, W. Yan, L. Zhang, W. Liu and Z. Song, Microelectro. Eng., 88(9), 3020 (2011). https://doi.org/10.1016/j.mee.2011.04.068
  8. X. Hu, Z. Song, Z. Pan, W. Liu and L. Wu, Appl. Surf. Sci., 255(19), 8230 (2009). https://doi.org/10.1016/j.apsusc.2009.05.056
  9. L. Yuling, T. Baimei, N. Xinhuan and Z. Haitao, 1 (2009).
  10. H. Zhu, L. A. Tessaroto, R. Sabia, V. A. Greenhut, M. Smith and D. E. Niesz, Appl. Surf. Sci., 236(1), 120 (2004). https://doi.org/10.1016/j.apsusc.2004.04.027
  11. G. B. Basim, I. U. Vakarelski, and B. M. Moudgil, J. Colloid. Interf. Sci., 263(2), 506 (2003). https://doi.org/10.1016/S0021-9797(03)00201-7
  12. http://www.displaybank.com/contents_img/296975.gif
  13. H. S. Hwang, J. H. Park, J. G. Park, M. C. Jeon, S. S. Lee, J. Y. Kim and H. R. Kim, J. Korean. Inst. Met. Mater., 25(2), 17 (2012). (in Korean)
  14. H. J. Kim, H. Y. Kim, H. D. Jeong, E. S. Lee and Y. J. Shin, J. Mater. Process. Tech., 130-131, 334 (2002). https://doi.org/10.1016/S0924-0136(02)00820-8
  15. M. H. Choi, N. H. Kim, S. Y. Kim and E. G. Chang, J. KIEEME., 18(1), 24 (2005).
  16. N. Chandrasekaran, S. Ramarajan, W. Lee, G. M. Sabde and S. Meikle, J. Electrochem. Soc., 151(12), G882 (2004). https://doi.org/10.1149/1.1810392
  17. L. Borucki, L. Charns and A. philipossian, J. Electrochem. Soc., 151(12), G809 (2004). https://doi.org/10.1149/1.1808635
  18. G. B. Basim and B. M. Moudgil, J. Colloid. Interf. Sci., 256(1), 137 (2002). https://doi.org/10.1006/jcis.2002.8352
  19. F. C. Chang, P. Kumar, R. Singh, K. Balasundaram, J. Lee, J. Lee, R. K. Singh, Colloid Surface.Physicochem. Eng. Aspect., 389(1), 33 (2011). https://doi.org/10.1016/j.colsurfa.2011.09.001
  20. W. Choi, U. Mahajan, S. M. Lee, J. Abiade and R. K. Singh, J. Electrochem. Soc., 151(3), G185 (2004). https://doi.org/10.1149/1.1644609
  21. N. G. Cha, Y. J. Kang, I. K. Kim, K. C. Kim and J. G. Park, Kor. J. Mater. Res., 16(12), 731 (2006). https://doi.org/10.3740/MRSK.2006.16.12.731